生成组合和排列
方法一:递归求解
(1)、从 n 个元素中,选择 m 个元素的组合
#include<iostream> using namespace std; int ans[10],a[20],m,n; bool visited[20]; void output() { int i; for(i=1;i<m;i++) cout<<ans[i]<<" "; cout<<ans[i]<<endl; } void work(int i,int k) { if(i==m+1) { output(); return ; } for(;k<=n;k++) //flag1 { if(!visited[k]) { ans[i]=a[k]; visited[k]=true; //flag2 work(i+1,k); visited[k]=false; //flag2 } } } int main() { int i; while(cin>>n>>m&&n) { for(i=1;i<=n;i++) { cin>>a[i]; visited[i]=false; } work(1,1); } return 0; }
输入:
3 2
1 3 5
输出:
1 3
1 5
3 5
(2)、从n个元素中选择m个元素的排列
只需在flag1出的for循环中k=1
输入:
3 2
1 3 5
输出:
1 3
1 5
3 1
3 5
5 1
5 3
(3)、从n个元素中选择m个元素的可重复组合
只需把flag2出的visitted注释掉
输入:
3 3
1 3 5
输出:
1 1 1
1 1 3
1 1 5
1 3 3
1 3 5
1 5 5
3 3 3
3 3 5
3 5 5
5 5 5
方法二:状态压缩
(1)、从n个元素中选择m个元素的组合
#include<iostream> #include<cstdio> #include<cmath> using namespace std; int a[20],p[20],m,n; bool judge(int x)//判断x转换成二进制中1的个数 { int cnt,t; cnt=0; while(x) { t=x&(-x); x=x^t; t=log2(t); p[cnt++]=t; } if(cnt==m) return true; return false; } void work() { int nn,i,j; nn=pow(2,n); for(i=1;i<nn;i++) { if(judge(i)) { for(j=0;j<m;j++) { printf("%d ",a[p[j]]); } printf("\n"); } } } int main() { int i; while(cin>>n>>m&&n) { for(i=0; i<n; i++) { cin>>a[i]; } work(); } return 0; }
输入:
3 2
输出:
1 3
1 5
3 5
方法三:使用STL中的 next_permutation 函数
(1)生成全排列
#include<iostream> #include<algorithm> #include<cstdio> using namespace std; int p[20],n; void work() { int i; sort(p,p+n); do { for(i=0;i<n;i++) printf("%d ",p[i]); printf("\n"); }while(next_permutation(p,p+n)); //prev_permutation(p,p+n) //生成降序 } int main() { int i; while(cin>>n&&n) { for(i=0; i<n; i++) { cin>>p[i]; } work(); } return 0; }
输入:
3
3 1 5
输出:
1 3 5
1 5 3
3 1 5
3 5 1
5 1 3
5 3 1