学习视频——B站【小土堆】
代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10("../data", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size = 10, 训练数据集的长度为:10
print(f"训练数据集的长度为:{format(train_data_size)}")
print(f"测试数据集的长度为:{format(test_data_size)}")
# 利用Dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = nn.Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10),
)
def forward(self, x):
x = self.model(x)
return x
# 创建网络模型
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.SGD(tudui.parameters(), lr=0.01)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
for i in range(epoch):
print(f"-----第{format(i+1)}轮训练开始-----")
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
print(f"训练次数:{format(total_train_step)}, Loss: {format(loss.item())}")
结果
该文介绍了如何使用PyTorch进行CIFAR10数据集的图像分类,通过构建卷积神经网络(CNN),应用MaxPool2d、Flatten和Linear层,以及使用CrossEntropyLoss损失函数和SGD优化器进行训练。文章展示了数据加载、网络结构定义、训练过程的详细步骤。

被折叠的 条评论
为什么被折叠?



