Pytorch学习日记——网络模型的保存与读取

文章介绍了如何在PyTorch中使用两种方法保存和加载网络模型,包括完整模型和仅保存state_dict的方式。还展示了加载预训练的vgg16模型以及自定义的Tudui网络模型的示例代码,并提到了加载自定义模型时的注意事项。
摘要由CSDN通过智能技术生成

学习视频——B站【小土堆

网络模型的保存,代码

import torch
import torchvision
from torch import nn

vgg16 = torchvision.models.vgg16(pretrained=False)

# 保存方式1 模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")

# 保存方式2 模型参数(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")  # 将参数保存成字典

# 陷阱
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)

    def forward(self, x):
        x = self.conv1(x)
        return x

tudui = Tudui()
torch.save(tudui, "tudui_method1.pth")

网络模型的读取,代码

import torch
import torchvision
from torch import nn

# 方式1,加载模型
# model = torch.load("vgg16_method1.pth")
# print(model)


# 方式二,加载模型
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
# model2 = torch.load("vgg16_method2.pth")
# print(model2)
#print(vgg16)

# 陷阱1
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)

    def forward(self, x):
        x = self.conv1(x)
        return x


model3 = torch.load("tudui_method1.pth")
print(model3)
# 从模型当中import所有也可,如:
# from model_save import *
# model3 = torch.load("tudui_method1.pth")
# print(model3) # 其中model_save为模型所在文件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值