蛇形(回型)矩阵及其扩展

本文探讨了如何根据给定正整数n生成蛇形(回型)矩阵及其扩展变形。当n为3时,输出的矩阵分别展示了两种不同的排列方式。文章指出,这种问题的核心是利用二维数组实现,并提到解决方案可以通过适当调整来适应矩阵边长为2n-1的情况。作者鼓励读者分享更高效的解法。
摘要由CSDN通过智能技术生成

之前看到了这样的一条题目,给定一个正整数n,要求输出边长为n的矩阵。

例如:当正整数n为3时,输出应该为

 1    2    3

 8    9    4

 7    6    5

想了一会儿,觉得这道题考查的知识点是数组,利用二维数组来进行输出。

public class Solution {
	public static void main(String[] args){
		int n = 4; //正整数N的值
		int[][] Matrix = new int[n][n];
		int row = 0; //每一圈最左上角的坐标(row, row)
		int column = n-1; //每一圈最右下角的坐标(column, column)
		int count = 0;
		
		//蛇形矩阵的生成顺序是上-右-下-左
		//一共需要循环2n-1次
		if(n%2 != 0){
			Matrix[n/2][n/2] = n*n;
		}
		while(row < column){
			//上
			for(int i = row; i <= column; i++){
				Matrix[row][i] = ++count;
			}	
			//右
			for(int i = row + 1; i <= column; i++){
				Matrix[i][column] = ++count;
			}
			//下
			for(int i = column - 1; i >= row; i--){
				Matrix[column][i] = ++count;
			}
			//左
			for(int i =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值