自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(94)
  • 收藏
  • 关注

原创 冷冻切片TS和BS的区别

在快速病理(尤其术中冰冻)中,临床常根据时间和诊断需求选择 TS 或 BS,很多情况下会结合两者使用以提高诊断准确性。制作方法:将组织块放在冷冻切片机里冷冻硬化,然后切成 5–10 μm 厚度的切片,进行快速 H&E 染色观察。制作方法:将新鲜组织在玻片上轻轻触碰或压一下,使细胞脱落到玻片表面,然后快速染色观察。缺点:制备时间略长,对技术要求较高,可能会有冰晶伪影影响。优点:可以看到组织学结构,诊断信息比 TS 更完整。缺点:只能观察脱落的细胞形态,组织结构信息有限。= “冷冻块切片”,更偏组织学。

2025-09-11 16:54:26 226

原创 QuPath 软件中Image相关属性解释

【代码】QuPath 软件中Image相关属性解释。

2025-07-14 10:31:20 251

原创 肿瘤浸润淋巴细胞是什么,与三级淋巴结构的关系

肿瘤浸润淋巴细胞()是指,主要包括T细胞、B细胞和自然杀伤(NK)细胞等。其中以最为常见。

2025-07-13 10:35:32 395

原创 明场显微镜简介

明场显微镜是一种依靠样品吸收、散射透射光成像的显微镜。光源照射样品,透过的光直接进入物镜;样品的结构通过吸光和折射改变光的强度,形成亮-暗对比;最终在视野中显示为“明亮背景 + 暗色结构。

2025-07-09 16:29:58 306

原创 三级淋巴结构简介

发生部位的异位性(非淋巴器官)形成方式的诱导性(炎症驱动)功能上的类二级性(免疫反应活性)TLS不是传统意义上的淋巴器官,而是在特定病理状态下“次生”形成的免疫微环境结构,因此被归类为“三级”。TME 是肿瘤微环境(Tumor Microenvironment)的缩写。TME 指的是肿瘤细胞周围的非肿瘤成分,包括多种细胞类型、基质和信号分子,共同构成了影响肿瘤发生、发展、免疫应答及治疗反应的复杂生态系统。TME的主要组成成分包括:免疫细胞(淋巴细胞、髓系细胞等)

2025-07-09 16:08:07 544

原创 多实例学习简介

多实例学习(Multiple Instance Learning, MIL)是一种弱监督学习方法,主要特点是在训练过程中,标签是赋予 “样本包(bag)” 而不是单个实例(instance)。

2025-07-09 16:02:15 451

原创 全息断层成像简介

不需要染色,即可识别细胞核、胞质、血管、腺体等结构;通过**干涉成像(光学全息)**记录振幅和相位;,从多角度的相位图中计算出样品的三维折射率分布。,可用于获取细胞和组织的三维结构与密度信息。利用相干光(如激光)从多个角度照射样品;折射率反映了材料对光传播的影响,与组织的。,通过记录光的散射信息来重建样品内部的。:实时观察药物处理下的细胞状态变化。收集样品对光波的散射或衍射信息;:追踪细胞分裂、细胞内器官运动;:测量细胞体积、密度、干质量等;、动态过程观察、组织病理分析。:如你当前的研究,将其用于。

2025-07-09 15:49:46 386

原创 报错cv2.error:OpenCV(4.11.0)opencv/modules/imgcodecs/src/loadsave.cpp:79:error:(-215:Assertion failed

使用opencv打开图像的尺寸过大时就会报错,主要是OpenCV本身对加载的图像大小是由限制的,这个限制定义在modules\imgcodecs\src\loadsave.cpp。只需记住在设置环境变量之后导入opencv ,否则它将无法工作。支持的最大图像宽度高度 2^20最大像素数目2^30。这将将限制更改为2^40。

2025-06-04 14:48:24 994

原创 把二级文件夹下的文件全部提取到一级文件夹

【代码】把二级文件夹下的文件全部提取到一级文件夹。

2025-06-03 13:17:15 323

原创 计算A图片所有颜色占B图片红色区域的百分比

下面查看提取的mask是否正确额。

2025-06-03 11:27:02 395

原创 linux系统下/home/anaconda3/envs/py1/python.exe: can‘t open file ‘/home/info‘: No such file or directory

linux下python解释器配置错误解决方法

2025-05-20 10:49:43 765

原创 Understanding Deep Learning 第三章 Shallow neural networks

当一层中的每个变量都连接到下一层中的每个变量时,我们称之为全连接网络。对于每个输出,多面体是相同的,但是它们包含的线性函数可能不同。这些功能的四个“连接点”(在垂直虚线处)被限制在相同的位置,因为它们共享相同的隐藏单元,但斜率和整体高度可能不同。)的网络处理,每个隐藏单元的输入是两个输入的线性函数,对应一个有向平面。普遍逼近定理证明,只要有足够的隐藏单元,就存在一个浅层神经网络,它可以将定义在。我们一直在讨论一个有一个输入,一个输出和三个隐藏单元的神经网络。随着隐藏单元的增加,模型可以逼近更复杂的函数。

2025-02-15 14:39:22 934

原创 PyTorch深度学习实践【刘二大人】之卷积神经网络

GoogLeNet的Inception模块,思路就是我们不知道多大的卷积核更好,我们就多选择几种卷积核然后concatenate进行沿通道拼接。网络中全部用的线形层串行连接起来,我们叫做全连接网络。输入与输出任意两节点间都有权重,这样的线形层叫做全连接层。3通道的图像,与3个卷积核做内积得到3个新的3*3矩阵,并对应位置相加。在卷积层数过多时,会出现梯度消失的情况,需要用残差网络来解决这个问题。卷积神经网络的基本特征,先特征提取再进行分类。下面是此模型的主要代码。

2025-01-18 13:57:35 488

原创 PyTorch深度学习实践【刘二大人】之多分类问题

这个公式就能满足两个条件,每个可能输出的概率值都为正,其次所有概率加起来为1。多分类问题,最后用softmax层计算每个分类的值。相加求和,可以满足概率相加为1。zi是每种可能的概率值,分子。确保概率为正,分母把每个。

2025-01-13 15:24:19 383

原创 PyTorch深度学习实践【刘二大人】之加载数据集

只用一个样本会得到比较好的随机性,会帮助跨越鞍点。用全部样本计算速度会大大提升。深度学习中我们会使用mini-batch来均衡性能上时间上的需求。Iteration定义:每次训练使用batch-size的次数,即总样本数/batch-size。在梯度下降中有时用全部的数据,有时只用一个样本也称随机梯度下降。batch-size定义:每次训练时所用的样本数量。epoch定义:所有样本都参与了训练。batch-size为2并且打乱顺序。

2025-01-12 21:32:41 293

原创 PyTorch深度学习实践【刘二大人】之Logistic回归

下图是二分类的损失函数,本质上是交叉熵公式,用途是度量预测分布与真实分布之间的差异,最终预测值越大越好,说明越接近,但loss有负号,所以loss越小越好。下图就是一个经典的手写数字分类问题,判断数字是0到9的哪一个分类,要用回归的方式估算每个类别的概率为多少,最终选择概率最大的值。根据我们数据,(1,0)(2,0)(3,1),我们推断在2.5小时就为0.5,就是图像的交点。前几节课的线性回归输出值为实数,我们要求概率,所以要把输出值映射为0到1的区间,就选取了。

2025-01-08 22:11:40 432

原创 PyTorch深度学习实践【刘二大人】之线性回归

前几节课中,我们都是手动去求导数,在pytorch中主要先构建计算图,梯度什么的会自动求出。另外插一句,本来loss求出也是一个列向量,但因为要求loss是一个标量,所以loss要进行求和,可以选择是否求均值。我们模型为y=w*x+b,w与b为了能与3行1列的矩阵相乘也变为3行1列。则在初始化时x_data与y_data值也是3行1列的矩阵。用pytorch写深度神经网路,主要分为以下四步。在numpy中做加法存在广播机制,维度不同的。

2025-01-07 22:00:17 218

原创 PyTorch深度学习实践【刘二大人】之反向传播

下面是f=x*w具体的反向传播过程,L对z的偏导是上一步传递过来的不用管,L对x和L对w的偏导都是链式法则,带入进行运算,如果x前面还有值就继续向前传递。但在网络比较复杂时候,进行一个个求导运算已经太过于复杂,于是我们考虑能否把网络看成一幅图,在图上传播梯度,最终根据链式法则求出梯度。对于线性模型进行反向传播,求出L对w的偏导后,用梯度下降算法对权重进行更新。下图我们可以发现经过化简,无论多少层,都可以看成wx+b,这说明线性模型具有局限性。在上一节课中,我们知道了要用损失对权重w求导,来更新权重。

2025-01-04 22:22:24 299

原创 Understanding Deep Learning 第二章 Supervised learning

相反,一个非常有表现力的模型可能描述训练数据的统计特性,这些特性是非典型的,并导致不寻常的预测。寻找使损失最小的参数的过程称为模型拟合、训练或学习。和斜率ф1),因此我们可以计算每个值组合的损失,并将损失函数可视化为一个曲面。定义了一个可能的投入产出关系族(所有可能的直线),参数的选择决定了这个族的成员(特定的直线)。更低的损失意味着更好的匹配。线性回归有一个明显的缺点,它只能将输入和输出之间的关系描述为一条直线。章)同样具有表现力,但可以用更少的参数描述复杂的函数,并且在实践中工作得更好。

2025-01-04 16:53:59 834

原创 Understanding Deep Learning第一章Introduction

然而,这些行动以一种不确定的方式改变了系统的状态,对于任何行动的选择,对手玩家可能会做出许多不同的反应。机器人可以在给定的时间内执行有限数量的动作(移动不同的关节),这些动作会改变世界的状态(它的姿势)。中的模型接收包含餐厅评论的文本字符串作为输入,并预测该评论是正面的还是负面的。它可以是离散的或连续的,低维的或高维的,长度恒定的或可变的。为两张真实图像找到这些变量,插值它们的值,然后使用这些中间变量来创建新图像,我们可以生成中间结果,这些中间结果在视觉上是可信的,并且混合了两张原始图像的特征。

2025-01-03 22:17:13 1043

原创 PyTorch深度学习实践【刘二大人】之梯度下降算法

梯度下降更新是以整个的所有数据的平均损失,随机梯度下降是从n个数据从里面随机选一个,这是更新公式变为了拿单个样本得损失进行更新。随机梯度下降只用一个样本,而所有样本都具有噪声,这样就引入了随机噪声,这样即使陷入鞍点,随机噪声也可能把我们推动,在训练过程中就有可能跨越鞍点像最优值迈进。梯度下降算法的目的是寻找全局花费的最小值,首先要确定初始点往左还是往右下降,要根据梯度的定义,梯度就是目标函数对权重求导。,α为学习率,一般学习率要取比较小,若学习率较大w移动的过多,就可能错过最小梯度点。

2025-01-02 22:57:42 359

原创 PyTorch深度学习实践【刘二大人】之线性模型

在一般机器学习任务中,先拿一个线性模型看是否有效,本次数据可以轻易看出是属于线性模型,选取y=x*w,此时问题在于权重w取多少,在机器学习中我们都是随机猜一个随机值,然后判断与数据集之间的误差。对于机器学习来说,模型经过训练集的训练,获得新的输入能得到相应预测结果,得到的结果与测试集相对比,进而再调整模型。值得注意的是,损失函数是针对一个样本的,而对于整个的训练集要用下面的公式,先把每个样本损失都加起来,再除以整个个数N。问如果学习4个小时,会得到多少分?​​​在深度学习时,画的表x轴为训练轮数。

2025-01-01 21:18:02 224

原创 PyTorch快速入门教程【小土堆】之完整模型验证套路

【代码】PyTorch快速入门教程【小土堆】之完整模型验证套路。

2024-12-31 16:34:06 642

原创 PyTorch快速入门教程【小土堆】之利用GPU训练

【代码】PyTorch快速入门教程【小土堆】之利用GPU训练。

2024-12-31 16:11:29 509

原创 PyTorch快速入门教程【小土堆】之完整模型训练套路

【代码】PyTorch快速入门教程【小土堆】之完整模型训练套路

2024-12-31 15:42:24 678

原创 PyTorch快速入门教程【小土堆】之网络模型的保存和读取

【代码】PyTorch快速入门教程【小土堆】之网络模型的保存和读取。

2024-12-31 14:45:18 489

原创 PyTorch快速入门教程【小土堆】之优化器

【代码】PyTorch快速入门教程【小土堆】之优化器。

2024-12-30 20:06:24 511

原创 PyTorch快速入门教程【小土堆】之损失函数与反向传播

2. 为我们更新输出提供一定的依据(反向传播)下方代码是loss函数在模型中如何使用。上方代码举例了几种loss函数的使用。1,计算实际输出和目标之间的差距。

2024-12-30 19:51:50 701

原创 PyTorch快速入门教程【小土堆】之Sequential使用和小实战

【代码】PyTorch快速入门教程【小土堆】之Sequential使用和小实战。

2024-12-30 19:11:53 460

原创 PyTorch快速入门教程【小土堆】之全连接层

【代码】PyTorch快速入门教程【小土堆】之全连接层。

2024-12-30 18:52:52 511

原创 PyTorch快速入门教程【小土堆】之非线性激活

非线性变换主要目的是向网络当中引入非线性特征,非线性特征越多才能训练出符合各种曲线,符合更多特征的模型,如果都是直接表现的话泛化能力不好。

2024-12-30 16:50:54 538

原创 PyTorch快速入门教程【小土堆】之池化层

【代码】PyTorch快速入门教程【小土堆】之池化层。

2024-12-30 16:31:41 476

原创 PyTorch快速入门教程【小土堆】之卷积层

【代码】PyTorch快速入门教程【小土堆】之卷积层。

2024-12-30 15:38:48 427

原创 PyTorch快速入门教程【小土堆】之土说卷积操作

跟神经网路相关的工具都放在torch.nn模块里面。

2024-12-30 14:16:04 359

原创 PyTorch快速入门教程【小土堆】之nn.Module的使用

nn为神经网路Neural Network的缩写,本次实现了一个最简单的把输入值加1的模型。

2024-12-30 13:44:11 384

原创 PyTorch快速入门教程【小土堆】之DataLoader的使用

dataset数据集,相当于一副扑克,dataloader数据加载器相当于我们的手,选择摸几张牌,怎么摸牌。

2024-12-29 22:10:38 356

原创 PyTorch快速入门教程【小土堆】之torchvision中的数据集使用

本次选取了CIFAR10数据集作为演示。

2024-12-29 21:23:13 405

原创 PyTorch快速入门教程【小土堆】之Transforms的使用

本文中的transforms指的并不是那个知名的模型,而是Transforms.py所在的一个包,相当于一个工具箱,可以被调用,里面有Resize,PILToTensor等方法,可直接对图片进行操作。

2024-12-29 19:58:12 328

原创 PyTorch快速入门教程【小土堆】之TensorBoard的使用

tensorboard的用法,在左图显示2974步时输入的图像,右图是训练过程中loss的变化。

2024-12-29 19:08:55 230

原创 PyTorch快速入门教程【小土堆】之Dataset类代码

我的配置如下,所选torch版本2.5.0+cu124,cuda版本12.4。

2024-12-29 16:17:11 297

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除