Stable Diffusion涂鸦生建筑效果图教程

一、演示内容:

1、SD的photopea插件涂鸦发送之controlnet,

2、用scribble+shuffle预处理,

3、zaha的lora,

4、提示词描述

所有的AI[设计工具],模型和插件,都已经整理好了,文末扫码即可免费获取噢~

二、成果展示

白天

参数立面感

三、教程准备

1、一张草稿

2、一张shuffle参考图

本图为陈总自制lora模型,生成的售楼处的图

3、用到的模型,仍然是henmixReal_v40.safetensors,C站可以下到

四、生图步骤

1、填写如下提示词

parameters

a rendering of a building with large windows on it’s side and a city in the
background,people walking around it on the sidewalk,a digital rendering,David
Chipperfield,hypermodernism,vray
render,architecture,bridge,building,city,cityscape,cloud,cloudy_sky,day,east_asian_architecture,house,mountain,no_humans,outdoors,road,ruins,scenery,sky,skyscraper,tower,tree,
Negative prompt: overexpousure, sketch,illustrious,logo,text, paintings,
sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres,
((monochrome)), ((grayscale)), watermark, signature, text, [(
NG_DeepNegative_V1_75T :0.9) :0.2], high contrast,

Steps: 12, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 2971866181, Size:
1024x512, Model hash: d1aaf70725, Model: henmixReal_v40, NGMS: 3, ControlNet
0: “preprocessor: invert (from white bg & black line), model:
control_v11p_sd15_scribble [d4ba51ff], weight: 0.6, starting/ending: (0, 1),
resize mode: Crop and Resize, pixel perfect: False, control mode: Balanced,
preprocessor params: (512, 64, 64)”, ControlNet 1: “preprocessor: shuffle,
model: control_v11e_sd15_shuffle [526bfdae], weight: 0.4, starting/ending: (0,
1), resize mode: Crop and Resize, pixel perfect: True, control mode: Balanced,
preprocessor params: (512, 64, 64)”, CFG Rescale φ: 0, AddNet Enabled: True,
AddNet Module 1: LoRA, AddNet Model 1: zahahadid(448e3b918283), AddNet Weight
A 1: 0.35, AddNet Weight B 1: 0.35

2、生图参数如下

3、测试推荐种子:

2060827079

2060827087

3816377789

五、重点讲解:

1、photopea插件:

插件下载几安装地址:

https://github.com/yankooliveira/sd-webui-photopea-embed

食用方法,与ps基本相同,免费是全功能,有广告,可以编辑后可保存或者直接发送到生图界面

2、提示词提取插件:

1、wd14-tagger和clip-interrogator

https://github.com/pharmapsychotic/clip-interrogator-ext

https://github.com/toriato/stable-diffusion-webui-wd14-tagger

3、lora参数为0.35,不宜过大

4、shuffle参数为0.4


六、过程图分享:

henmixreal大模型生成的效果

动漫大模型:revAnimated_v122

parameters

a rendering of a building with large windows on it’s side and a city in the
background,people walking around it on the sidewalk,a digital rendering,David
Chipperfield,hypermodernism,vray
render,architecture,bridge,building,city,cityscape,cloud,cloudy_sky,day,east_asian_architecture,house,mountain,no_humans,outdoors,road,ruins,scenery,sky,skyscraper,tower,tree,
Negative prompt: overexpousure, sketch,illustrious,logo,text, paintings,
sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres,
((monochrome)), ((grayscale)), watermark, signature, text, [(
NG_DeepNegative_V1_75T :0.9) :0.2], high contrast,
Steps: 12, Sampler: DPM++ SDE Karras, CFG scale: 9, Seed: 2161132774, Size:
1024x512, Model hash: 4199bcdd14, Model: revAnimated_v122, Clip skip: 2, NGMS:
3, ControlNet 0: “preprocessor: invert (from white bg & black line), model:
control_v11p_sd15_scribble [d4ba51ff], weight: 0.6, starting/ending: (0, 1),
resize mode: Crop and Resize, pixel perfect: False, control mode: Balanced,
preprocessor params: (512, 64, 64)”, ControlNet 1: “preprocessor: shuffle,
model: control_v11e_sd15_shuffle [526bfdae], weight: 0.4, starting/ending: (0,
1), resize mode: Crop and Resize, pixel perfect: True, control mode: Balanced,
preprocessor params: (512, 64, 64)”, CFG Rescale φ: 0, AddNet Enabled: True,
AddNet Module 1: LoRA, AddNet Model 1: zahahadid(448e3b918283), AddNet Weight
A 1: 0.35, AddNet Weight B 1: 0.35

未加shuffle的图

预处理器选none的情况

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
<think>好的,我现在需要帮助用户了解如何使用Stable Diffusion进行图图操作。首先,我得回顾一下用户提供的引用内容,确保回答准确。根据引用1,图图是Stable Diffusion的核心功能,允许用户基于现有图片和提示词成新图片。引用2提到如何处理小区域图像,比如放大重绘以修复脸部崩坏的问题。引用3则指出可以通过修改提示词自定义结果,比如改变头发颜色等。引用4介绍了涂鸦功能,用户可以在图片上涂鸦成新图像。 首先,我应该分步骤解释图图的基本流程,包括上传原图、设置参数、输入提示词等。然后,可能需要提到不同的应用场景,比如局部重绘或涂鸦修改,这些在引用2和4中有提到。此外,用户可能关心如何优化结果,比如调整重绘幅度或使用ControlNet,这需要结合引用中的信息进行说明。 还需要注意用户可能的疑问点,例如如何处理小区域的细节问题,这时候可以引用引用2的内容,建议放大局部进行重绘。另外,提示词的重要性需要强调,根据引用3,提示词可以帮助定向修改图像特征,比如颜色或风格。 可能还需要比较不同工具或方法,比如涂鸦与局部重绘的区别,如引用4所述。最后,确保回答结构清晰,步骤明确,并自然融入引用内容作为支持。同时,成的相关问题需要覆盖用户可能进一步探索的方向,比如参数调整、细节优化或高级技巧。</think>### 如何使用 Stable Diffusion 进行图图操作? Stable Diffusion 的图图(img2img)功能允许用户基于现有图片成新图像,同时结合提示词(Prompt)对结果进行定向调整。以下是具体操作步骤和技巧: --- #### **一、基础操作步骤** 1. **上传原图** 在 Stable Diffusion 的图图界面中上传需要改造的图片。支持的格式包括 PNG、JPG 等常见图片类型。 2. **设置参数** - **重绘幅度(Denoising Strength)**:控制新图与原图的差异程度(0-1)。数值越低越接近原图,数值越高创意性越强[^1]。 - **分辨率**:建议与原图保持一致,避免比例失真。 3. **输入提示词(Prompt)** 描述希望修改的方向,例如更换颜色、风格或添加元素。例如: ``` white hair, red eyes, cyberpunk background ``` 4. **成与调整** 点击成后,根据结果微调提示词或重绘幅度。若局部效果不佳,可结合局部重绘(Inpainting)功能进行细化[^2]。 --- #### **二、核心应用场景** 1. **局部细节修复** - 当原图存在小区域模糊或崩坏(如人脸)时,可截取该部分单独放大重绘,再合并回原图,利用模型对大区域去噪更清晰的特点提升效果。 2. **风格迁移** - 保留原图构图,通过提示词修改风格(如“水墨画”“赛博朋克”)或元素(如“四季变换”)。 3. **涂鸦创作(Doodling)** - 在图片上绘制粗略线条或色块,配合提示词成具象内容。例如,在天空区域涂鸦后输入“flying dragon”成龙形物[^4]。 --- #### **三、进阶技巧** 1. **ControlNet 辅助构图** 使用 ControlNet 插件提取原图的边缘、深度或姿势信息,确保成图的结构稳定性。 2. **多步骤迭代** - 首先成整体风格,再通过局部重绘细化细节。 - 示例流程:原图 → 调整背景 → 优化人物服装 → 修复面部。 3. **负向提示词(Negative Prompt)** 排除不想要的元素,如“blurry”(模糊)或“deformed hands”(手部变形)。 --- #### **四、常见问题解决** - **脸部崩坏**:提高分辨率,或单独截取脸部重绘。 - **色彩偏差**:在提示词中明确颜色描述,或使用“Color Balance”插件校正。 - **构图混乱**:降低重绘幅度(如 0.3-0.5),或通过 ControlNet 约束构图。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值