可解释性AI(XAI)
解释性AI(XAI)旨在提高人工智能系统的透明度和可理解性,使人们更好地理解AI的决策过程和原理。随着AI技术的广泛应用,XAI成为了一个备受关注的重要领域。它不仅有助于建立人们对AI的信任,还可以帮助解决AI伦理和偏见等问题。XAI的研究和应用涵盖了从算法改进、可视化技术到应用场景等多个方面,为解决复杂问题提供了新的思路和方法。
下面分享一个可解释性AI在光通信中补偿非线性效应的例子,以此说明可解释性AI的优势和发展前景。
在光通信中,有一个损伤一直限制着光通信容量——光纤非线性效应。
光纤非线性补偿算法经过了十几年的发展,形成了两类算法:黑盒模型和白盒模型。黑盒模型就是纯数据驱动的算法,通过大量的数据训练一个补偿模型,而不去探究内部的原理,这种方案简单、直接,但是想达到期望的收益,网络需要非常复杂且泛化性极差,无法实际应用。白盒模型则是完全从物理模型出发研究光纤非线性机理,但不幸的是,光纤非线性并没有解析解,只能通过数值求解的方式,因此白盒模型的复杂度也很高。近几年,研究人员发现白盒理论中的非线性补偿逻辑实际上就是线性计算和非线性计算的组合,这和神经网络干的事情实际上是一样的。于是,研究人员开始在白盒理论的指导下,进一步调试和训练AI。目前来看,这种黑盒和白盒结合的模式,可以在保证补偿收益的前提下,降低算法复杂度。
AI经历了这么多年的发展,现在正是应用爆发的时代。但AI并非万能的,在进入各行各业时,难免水土不服。如果能够结合特定领域的专家知识,应该可以加速AI的落地。另外,在某些领域,可靠性是最重要的(比如电信)指标,这时可解释性就很重要了,这可以帮助工程师了解AI的下限在哪儿,从而采取对应的保护措施。