2025年3月中国数据库排行榜:PolarDB夺魁傲群雄,GoldenDB晋位入三强

阳春三月,万物复苏。2025年3月中国数据库流行度排行榜的发布,不仅展现了中国数据库企业在技术创新、生态建设和应用深化方面的显著成就,也让人感受到市场的蓬勃生机。PolarDB凭借其强大的技术创新能力和完善的产品布局,成功重返排行榜榜首,彰显了其在数据库领域的领先地位和市场影响力。

国产数据库正在加速赶超国际同行,在云原生、分布式架构以及AI增强技术等关键领域取得了突破性进展。随着自主研发能力的持续提升和国际化战略的稳步推进,中国数据库产业必将迈向更加辉煌的未来。

一、榜单争锋战正酣,PolarDB夺桂冠,GoldenDB稳步攀

PolarDB凭借技术突破和生态影响力,时隔半年重返榜首。OceanBase紧随其后,GoldenDB持续上升,成功晋级至第三位。整体来看,排名层次逐渐清晰,头部厂商竞争白热化,而中坚力量则在技术创新与市场拓展中寻求更大突破。接下来,就和小编一同盘点榜单前十的表现。

 图1: 排行榜1-4位得分情况

PolarDB以711分的总分强势登顶排行榜,展现出强劲的市场竞争力。在TPC-C基准测试中,PolarDB以每分钟20.55亿笔交易(tpmC)和0.8元人民币/tpmC的成本,刷新了性能和性价比双榜世界纪录,相较于此前纪录,成本降低近40%。根据国际数据公司(IDC)发布的《2024年上半年中国分布式事务数据库软件市场跟踪报告》,2024上半年中国分布式事务数据库软件市场规模为1.5亿美元,其中阿里云在中国分布式数据库市场中排名第一

近期举办的PolarDB开发者大会进一步提升了市场关注度。在大会上,阿里云宣布PolarDB将秉承软硬件协同设计理念,并计划于2025年下半年推出全球首款基于CXL(Compute Express Link)交换机的数据库专用服务器,这将推动数据库技术的进一步革新。

 图2: 中国分布式事务数据库软件市场主要厂商市场份额

OceanBase本月以659.52分位列第二,尽管排名有变动,但其在分布式事务数据库市场的领导地位依然稳固。根据IDC报告,在独立数据库厂商中,OceanBase 市场份额位居第一,同时位列市场整体第四。此外,在「本地部署」中位列独立数据库厂商第一、整体排名第三。凭借卓越的事务处理能力,OceanBase正持续助力金融、政企等关键行业的数字化升级。

金篆信科GoldenDB以639.76分摘得探花,继续保持稳步攀升的态势。GoldenDB在市场表现方面尤为亮眼,其在国家开发银行的授权及服务采购项目中成功中标,金额高达3347.6万元,成为2月份金额最高的项目。

GaussDB持续保持前列,根据IDC报告,2024年上半年中国分布式事务数据库市场规模达1.5亿美元,同比增长18.5%,华为GaussDB位列市场前三,在分布式数据库赛道展现出强大实力。

尽管本月榜单中第五-十位的产品排名未变,但市场竞争同样激烈,各大数据库厂商在技术创新、市场拓展和生态建设上持续发力,进一步巩固自身优势,力求在未来的排名争夺中占据更有利的位置。

 图3: 排行榜5-10位得分情况

金仓数据库 本月得分626.47分,稳居第五。其产品已全面覆盖医院信息化建设的五大核心系统,在医疗行业提供高效、安全、稳定的数据支撑。此外,金仓数据库管理系统(KingbaseES)入选《2024年度专利密集型产品名单》,进一步巩固了其在国产数据库领域的技术积累和生态建设。

GBASE 以609.27分稳步前行。近期,南大通用成功中标广西商务厅数据库采购项目,成为唯一入围的分布式数据库厂商,进一步展现了其在政府和企业数字化转型中的竞争优势。

PingCAP数据库产品 TiDB 继续保持榜单第七名,并在全球市场影响力不断增强。其分布式架构、高可扩展性和HTAP能力,使其在金融、电信、互联网等行业广泛应用。随着云原生架构和AI时代的到来,TiDB正成为现代企业数据库解决方案的关键选择。

达梦数据库本月得分498.44分。上市首年,达梦数据发布的2024年度业绩报告显示,全年营业收入增长31.49%,净利润增长22.26%。这一成绩展现了达梦作为“国产数据库第一股”的稳健增长势头。

腾讯云TDSQL本月得分389.57,排名第九。在富融银行核心系统升级项目中,TDSQL凭借100%兼容MySQL的特性,实现无感迁移,保障业务连续性,降低运营成本,展现了其在金融数字化转型中的强大技术实力。

openGauss本月得分342.12分,位居第十。作为国产开源数据库的代表,其正积极探索AI与数据库的融合。近期,openGauss结合DeepSeek的RAG框架,实现了本地知识库的智能问答,提升了AI助手的准确性,为企业级用户提供了更安全、可控的本地化解决方案。

二、国产数据库竞速升级,榜单黑马崭露锋芒

本月的中国数据库排行榜中,一些排名上升或在技术创新、市场影响力方面表现突出的数据库产品同样备受关注,由于篇幅有限,接下来我们就挑选部分产品进行盘点。

 图4: 本月榜单热度上升产品的得分情况

排名第 15 位的 KaiwuDB ,其社区版本 KWDB 成为国内唯一入选 “2024 全球新势力项目 OpenRank Top10” 的开源项目,充分体现了其在全球开源生态中的活跃度与影响力。

自开源以来,KWDB 在项目推广、体系建设、人才培养和生态协作等方面取得了显著进展,逐步构建起开放且活跃的社区生态。未来,随着其在开源领域的持续深耕,KaiwuDB 有望在排行榜中进一步突破,为中国数据库产业的崛起贡献更多力量。

腾讯云的企业级托管型数据仓库 TCHouse 本月排名 上升 8 位,位列第 33 名。TCHouse 在稳定性、安全性方面表现优秀,同时提供 自主运维工具和自主开发环境,满足用户在 移动互联、广告、银行、保险、游戏、教育、地图 等行业的数仓需求。其高效的数据分析能力,为用户提升查询效率、释放数据价值提供了有力支撑。

由云和恩墨打造的MogDB本月排名上升 3 位,市场影响力持续扩大。近期,MogDB 在电力行业等关键领域的广泛应用和技术突破,进一步彰显了其技术实力和竞争优势。凭借高并发处理能力、快速故障恢复机制和全方位数据安全防护,MogDB 不仅为企业的数字化转型提供了有力支持,还通过优化 IT 基础设施,帮助企业有效降低了运营成本。

本月,梧桐数据库 排名上升了12 位,相较半年前已累计提升 近 30 位。其是由 中移动信息技术有限公司(中国移动集团大数据中心) 研发的一款 分布式 OLAP 数据库,支持 存算分离、无状态架构,具备 高可用、高可靠、高扩展 等特性,并采用 向量化计算 提升查询性能。其在大数据分析场景下的卓越表现,使其成为企业级 OLAP 解决方案的重要选择。

CloudWave 排名 第 46 位。相比传统数据库,CloudWave 解决了 云上弹性伸缩、数据格式单一、数据共享受限 等问题,采用 多集群共享数据架构,实现存算分离、弹性扩展,提供安全、高效、低成本的解决方案,广泛适用于 数据科学、数据治理、商业智能、现代数据共享等场景。

本月榜单中还有一款备受关注的黑马——Kingwow(金乌数据库),其排名从上月的 218 位大幅跃升至 156 位,展现出强劲的增长势头。就在上月,金乌数据库成功中标贵州农信国产分布式数据库项目,中标金额高达 405 万元,随着国产数据库在金融、能源等核心领域的加速渗透,金乌数据库的市场潜力和发展前景值得期待。

三、专家视角:解读中国数据库榜单

林春 太平洋保险数智研究院首席数据库专家。 PostgreSQL ACE,PGFans社区签约作者,中国PG分会专家。先后就职于平安科技,腾讯云等大厂。熟悉PG/Oracle等主流数据库相关技术,拥有丰富的实施、维护、管理经验,曾服务于通信、金融、电商、医疗等领域客户。热衷于开源PG技术研究及推广,活跃于PG技术社群,提倡DBA向内核精进,多次参加《中国PostgreSQL数据库生态大会》、《PostgreSQL中国技术大会》、《ACDU中国行》等技术大会。

25年的第一季度,国产数据库赛道的竞争十分激烈,前几名的排名变动频繁。3月PolarDB凭借技术突破和生态影响力重返榜首,这得益于其持续的技术创新。其他数据库也展现出强劲的实力,OceanBase在本地化部署上的优势明显,GoldenDB和GaussDB分别在案例和论文数量上有不错的表现。从榜单中可以感觉到,国内市场的头部企业对分布式的数据库架构越来越认可,这也给中国的IT数据库基础设施建设和创新带来更多利好。

PolarDB:云原生生态构建者

作为云原生数据库标杆,PolarDB 以计算存储分离架构为核心,支持超大规模横向扩展,在弹性伸缩、混合负载处理等方面表现突出。其通过深度优化云原生技术栈,形成覆盖 IaaS/PaaS/SaaS 的完整生态,持续领跑云数据库市场,展现出强大的技术整合能力与行业适配性。

OceanBase:分布式与 AI 融合先锋

以分布式事务处理技术为核心竞争力,OceanBase 在高并发、低时延场景下保持行业领先水平。其通过 AI 增强技术实现数据库自治运维,形成 “分布式架构 + 智能算法” 的双轮驱动模式,在金融、政务等对数据一致性要求极高的领域建立稳固护城河。

GoldenDB:金融级核心系统攻坚者

作为金融级分布式数据库代表,GoldenDB 以 SQL 兼容性和高可用性为核心优势,在关键业务系统替换中展现出成熟的迁移能力。其独创的全局事务管理技术,使其在保障业务连续性的同时,实现传统架构与分布式架构的无缝衔接。

GaussDB:全栈协同创新者
依托华为全栈技术优势,GaussDB 在分布式架构、硬件协同优化等方面形成差异化竞争力。其通过开源社区构建开放生态,在金融、能源等领域加速渗透,展现出从芯片到应用的垂直整合能力与行业解决方案深度。

随着DeepSeek的大热,AI与数据库的深度融合正在重构数据处理范式。面向AI,各大厂商相续发力向量索引以便数据库能更好的承载AI时代的业务需求。运用AI,不断推动数据库自治运维能力提升,更将催生数据价值挖掘的全新模式。这种技术融合不仅是数据库技术的迭代升级,更是各行业实现数据驱动创新的核心基础设施变革。


相关阅读

原文链接https://www.modb.pro/db/1897207724635598848


更多精彩内容尽在墨天轮数据社区,围绕数据人的学习成长提供一站式的全面服务,持续促进数据领域的知识传播和技术创新。

<think>好的,我现在需要分析用户关于国产数据库性能下降的问题以及对比国外数据库的瓶颈点。首先,我得理解用户的问题核心:为什么使用国产数据库后性能会下降?当前的瓶颈在哪里? 可能的原因有很多,我需要逐一梳理。首先,国产数据库的发展时间相对较短,国外如Oracle、MySQL等有几十的积累,优化和生态更成熟。国产数据库可能在查询优化器、执行引擎等方面还不够完善,导致执行计划不够高效。 其次,兼容性问题。很多国产数据库为了兼容Oracle或MySQL的协议,可能牺牲了性能。比如,在协议转换层增加了额外开销,或者为了兼容某些语法导致执行效率降低。 然后是硬件和架构设计。国外数据库通常针对现代硬件(如多核CPU、SSD、分布式存储)做了深度优化,而国产数据库可能在底层存储引擎、锁机制、并发控制等方面优化不足,导致资源利用率不高。 另外,生态工具和周边支持也是一个因素。国外数据库有成熟的监控、调试、自动化工具链,而国产数据库可能缺乏这些,导致问题定困难,无法及时优化。 还有可能是用户的使用习惯和迁移过程中的配置不当。比如,没有根据国产数据库的特点调整参数,或者SQL写法没有优化,沿用之前的习惯导致性能问题。 接下来需要对比瓶颈点。比如,查询优化器是数据库的核心,国产的可能在处理复杂查询、多表关联时效率低;事务处理机制,如MVCC的实现可能不够高效;分布式架构下的数据一致性和网络延迟问题;存储引擎的写性能、索引结构等。 另外,社区和人才储备也是瓶颈。国外数据库有庞大的社区支持和经验丰富的DBA,国产数据库在这方面还在发展中,遇到问题时解决速度可能较慢。 不过,近国产数据库也在快速发展,比如TiDBOceanBase等,在某些场景下已经表现不错,但整体上仍有差距。需要具体分析应用场景,选择合适的数据库,并在迁移时进行充分的测试和调优。</think>国产数据库性能下降的原因及对比国外数据库的瓶颈点主要可归纳为以下几个层面: --- ### **一、性能下降的常见原因** 1. **查询优化器成熟度不足** - **问题表现**:复杂查询(如多表关联、子查询嵌套)执行计划不优,导致全表扫描或索引失效。 - **技术差距**:国外数据库(如Oracle)的优化器积累了大量统计信息和动态调整策略,而国产数据库的优化器可能缺乏对复杂场景的预判能力。 - **示例**:`SELECT * FROM A JOIN B ON A.id=B.id WHERE A.date>2023 AND B.value>100`,若未正确选择驱动表或索引,性能可能下降10倍以上。 2. **存储引擎与硬件适配不足** - **写瓶颈**:国产数据库在高并发写场景(如日志类应用)下,可能因锁机制(如行锁升级为表锁)或日志刷盘策略(WAL)效率低,导致吞吐量下降。 - **示例**:某国产数据库在SSD存储下单机写TPS为5万,而MySQL的InnoDB引擎可达10万+。 3. **分布式架构的额外开销** - **网络延迟**:国产分布式数据库(如TiDB)在跨节点事务(2PC协议)或全局索引查询时,网络通信可能增加10~50ms延迟。 - **数据一致性代价**:强一致性协议(如Raft)的日志同步开销,可能导致写性能低于最终一致性的国外数据库(如Cassandra)。 4. **兼容性适配的副作用** - **协议转换层开销**:为兼容MySQL协议,部分国产数据库在SQL解析、数据类型转换时增加20%~30%的CPU消耗。 - **功能模拟代价**:例如Oracle的`CONNECT BY`递归查询在国产数据库中通过多次JOIN模拟,性能可能下降5~10倍。 --- ### **二、当前主要瓶颈点对比** | **瓶颈维度** | **国产数据库典型问题** | **国外数据库对比优势** | |-------------------|-----------------------------------------------|------------------------------------------| | **查询优化器** | 缺乏历史执行统计、无法动态调整JOIN顺序 | Oracle的CBO优化器支持数百种代价模型规则 | | **事务处理** | MVCC实现导致版本链过长,垃圾回收效率低 | PostgreSQL的VACUUM机制可并发清理无效版本 | | **锁机制** | 全局锁竞争(如DDL阻塞DML) | MySQL的Metadata Locking已优化至行级影响 | | **分布式事务** | 2PC提交在跨数据中心场景延迟显著 | Google Spanner通过TrueTime实现低延迟跨区事务 | | **存储压缩** | 压缩算法(如ZSTD)未针对数据库页结构优化 | InnoDB的透明页压缩可节省50%空间且性能损失<5% | | **生态工具链** | 缺乏类似pt-query-digest的SQL分析工具 | 成熟的Percona Toolkit提供全链路诊断能力 | --- ### **三、典型场景性能对比数据** 1. **TPC-C测试** - **OceanBase**:608万tpmC(阿里云集群) - **Oracle Exadata**:3020万tpmC(同规模硬件) - **差距分析**:主要来自分布式事务协调开销和存储引擎压缩效率。 2. **OLAP场景(SSB基准测试)** - **TiDB**:查询响应时间平均为**2.3秒** - **Snowflake**:相同查询平均**0.8秒** - **瓶颈定**:列式存储(TiFlash)与计算节点数据传输效率不足。 --- ### **四、改进方向与选型建议** 1. **针对性优化**: - 对高频查询进行执行计划绑定(如Oracle的SQL Plan Baseline)。 - 使用国产数据库的列存引擎(如华为GaussDB的列存储)处理分析型负载。 2. **架构适配**: ```sql -- 将单表十亿级数据按时间分片到不同存储节点 CREATE TABLE logs ( id BIGINT, log_time DATETIME ) PARTITION BY RANGE (log_time) ( PARTITION p202301 VALUES LESS THAN ('2023-02-01'), PARTITION p202302 VALUES LESS THAN ('2023-03-01') ); ``` 3. **选型匹配原则**: - **高并发OLTP**:优先考虑OceanBaseGoldenDB的事务型优化版本。 - **混合负载**:TiDB的HTAP架构更适合,但需避免大表频繁ANALYZE。 --- ### **五、未来突破点** 1. **硬件协同设计**: - 利用DPU卸载日志压缩(如阿里云PolarDB已实现IO路径offload)。 2. **AI优化器**: 使用强化学习训练查询优化模型(如OpenGauss的AI4DB项目)。 3. **新存储介质适配**: 为PMem(持久内存)设计混合日志结构(如腾讯TDSQL的PMem-Log)。 --- 总结来看,国产数据库在基础功能上已逐步追平,但在极端场景优化、生态工具链、跨环境适配等方面仍需持续投。建议用户通过实际业务场景的基准测试(如Sysbench、TPCC),结合国产数据库的特有优化手段(如分区分片策略、冷热数据分离),逐步完成技术替换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值