题目
https://www.luogu.com.cn/problem/P2178
题目描述
一年一度的“幻影阁夏日品酒大会”隆重开幕了。大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加。
在大会的晚餐上,调酒师 Rainbow 调制了 nn 杯鸡尾酒。这 nn 杯鸡尾酒排成一行,其中第 nn 杯酒 (1 ≤ i ≤ n1≤i≤n) 被贴上了一个标签 s_is
i
,每个标签都是 2626 个小写 英文字母之一。设 str(l, r)str(l,r) 表示第 ll 杯酒到第 rr 杯酒的 r - l + 1r−l+1 个标签顺次连接构成的字符串。若 str(p, p_0) = str(q, q_0)str(p,p
0
)=str(q,q
0
),其中 1 ≤ p ≤ p_0 ≤ n1≤p≤p
0
≤n, 1 ≤ q ≤ q_0 ≤ n1≤q≤q
0
≤n, p ≠ qp
=q,p_0-p+1 = q_0 - q + 1 = rp
0
−p+1=q
0
−q+1=r ,则称第 pp 杯酒与第 qq 杯酒是“ rr 相似” 的。当然两杯“ rr 相似”(r > 1r>1)的酒同时也是“ 11 相似”、“ 22 相似”、……、“ (r - 1)(r−1) 相似”的。特别地,对于任意的 1 ≤ p ,q ≤ n,p ≠ q1≤p,q≤n,p
=q,第 pp 杯酒和第 qq 杯酒都 是“ 00 相似”的。
在品尝环节上,品酒师 Freda 轻松地评定了每一杯酒的美味度,凭借其专业的水准和经验成功夺取了“首席品酒家”的称号,其中第 ii 杯酒 (1 ≤ i ≤ n1≤i≤n) 的 美味度为 a_ia
i
。现在 Rainbow 公布了挑战环节的问题:本次大会调制的鸡尾酒有一个特点,如果把第 pp 杯酒与第 qq 杯酒调兑在一起,将得到一杯美味度为 a_p\times a_qa
p
×a
q
的 酒。现在请各位品酒师分别对于 r = 0,1,2,⋯,n-1r=0,1,2,⋯,n−1 ,统计出有多少种方法可以 选出 22 杯“ rr 相似”的酒,并回答选择 22 杯“rr 相似”的酒调兑可以得到的美味度的最大值。
输入格式
第 11 行包含 11 个正整数 nn ,表示鸡尾酒的杯数。
第 22 行包含一个长度为 nn 的字符串 SS,其中第 ii 个字符表示第 ii 杯酒的标签。
第 33 行包含 nn 个整数,相邻整数之间用单个空格隔开,其中第 ii 个整数表示第 ii 杯酒的美味度 a_ia
i
。
输出格式
包括 nn 行。
第 ii 行输出 22 个整数,中间用单个空格隔开。第 11 个整 数表示选出两杯“ (i - 1)(i−1) 相似”的酒的方案数,第 2 个整数表示选出两杯 “ (i - 1)(i−1) 相似”的酒调兑可以得到的最大美味度。若不存在两杯“ (i - 1)(i−1) 相似” 的酒,这两个数均为 00 。
输入输出样例
输入 #1 复制
10
ponoiiipoi
2 1 4 7 4 8 3 6 4 7
输出 #1 复制
45 56
10 56
3 32
0 0
0 0
0 0
0 0
0 0
0 0
0 0
输入 #2 复制
12
abaabaabaaba
1 -2 3 -4 5 -6 7 -8 9 -10 11 -12
输出 #2 复制
66 120
34 120
15 55
12 40
9 27
7 16
5 7
3 -4
2 -4
1 -4
0 0
0 0
说明/提示
【样例说明 1】
用二元组 (p, q)(p,q) 表示第 pp 杯酒与第 qq 杯酒。
00 相似:所有 4545 对二元组都是 00 相似的,美味度最大的是 8 × 7 = 56 8×7=56。
11 相似: (1,8) (2,4) (2,9) (4,9) (5,6) (5,7) (5,10) (6,7) (6,10) (7,10) (1,8)(2,4)(2,9)(4,9)(5,6)(5,7)(5,10)(6,7)(6,10)(7,10),最大的 8 × 7 = 568×7=56 。
22 相似: (1,8) (4,9) (5,6)(1,8)(4,9)(5,6) ,最大的 4 × 8 = 324×8=32 。
没有 3,4,5, ⋯ ,93,4,5,⋯,9 相似的两杯酒,故均输出 00 。
【时限1s,内存512M】
思路
看到LCP,那带后缀的算法都能做得啦
但本蒟蒻只会SA
考虑从大到小枚举height
每处理一个height就和旁边合并
然后计算贡献即可
代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=6e5+77;
int n,v[N];
char s[N];
ll ans1[N],ans2[N];
struct SA
{
int a[N],x[N],y[N],t[N],sa[N],height[N],rk[N];
bool cmp(int i,int j,int k)
{
return y[i]==y[j]&&y[i+k]==y[j+k];
}
void get_SA()
{
int m=50;
for(int i=1; i<=n; i++) t[x[i]=a[i]]++;
for(int i=1; i<=m; i++) t[i]+=t[i-1];
for(int i=n; i>=1; i--) sa[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1; i<=n; i++) y[++p]=i;
for(int i=1; i<=n; i++) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=0; i<=m; i++) t[i]=0;
for(int i=1; i<=n; i++) t[x[y[i]]]++;
for(int i=1; i<=m; i++) t[i]+=t[i-1];
for(int i=n; i>=1; i--) sa[t[x[y[i]]]--]=y[i];
swap(x,y);
x[sa[1]]=p=1;
for(int i=2; i<=n; i++)
x[sa[i]]=cmp(sa[i],sa[i-1],k) ?p:++p;
if(p>=n) break;
m=p;
}
for(int i=1; i<=n; i++) rk[sa[i]]=i;
for(int i=1,j=0; i<=n; i++)
{
if(j) --j;
while(a[i+j]==a[sa[rk[i]-1]+j]) ++j;
height[rk[i]]=j;
}
}
}SA;
bool cmp(int a,int b)
{
return SA.height[a]>SA.height[b];
}
int id[N],f[N],mm[N],mi[N],siz[N];
ll ans[N];
int gf(int x)
{
return x==f[x]?x:f[x]=gf(f[x]);
}
void merge(int x,int y,int len)
{
x=gf(x);y=gf(y);
f[y]=x;
ans1[len]+=1ll*siz[x]*siz[y];
siz[x]+=siz[y];
ans[x]=max(ans[x],ans[y]);
ans[x]=max(ans[x],max(1ll*mm[x]*mm[y],1ll*mi[x]*mi[y]));
ans[x]=max(ans[x],max(1ll*mm[x]*mi[y],1ll*mi[x]*mm[y]));
mm[x]=max(mm[x],mm[y]);
mi[x]=min(mi[x],mi[y]);
ans2[len]=max(ans2[len],ans[x]);
}
int main()
{
scanf("%d",&n);
scanf("%s",s+1);
for(int i=1; i<=n; i++) SA.a[i]=s[i]-96;
SA.get_SA();
for(int i=1; i<=n; i++) scanf("%d",&v[i]),id[i]=i;
for(int i=1; i<=n; i++) f[i]=i,siz[i]=1,mm[i]=mi[i]=v[i],ans[i]=-1e18;
memset(ans2,-63,sizeof(ans2));
sort(&id[2],&id[n+1],cmp);
for(int i=2; i<=n; i++)
merge(SA.sa[id[i]],SA.sa[id[i]-1],SA.height[id[i]]);
for(int i=n; i>=0; i--) ans1[i]+=ans1[i+1];
for(int i=n; i>=0; i--) ans2[i]=max(ans2[i],ans2[i+1]);
for(int i=0; i<n; i++) printf("%lld %lld\n",ans1[i],!ans1[i]?0:ans2[i]);
return 0;
}