【主席树】CF786 C. Till I Collapse

先来看个弱化版

[SDOI2009] HH的项链
在这里插入图片描述

思路

如果直接维护区间内的不同颜色,将会很难维护。
l a s t i last_i lasti a i a_i ai 上一次出现的位置,如果前面没出现过则等于 0。
考虑哪些点才会对答案有贡献:只有在询问区间内第一次出现的点才会有贡献。也就是说,假如我们询问的是 [ l , r ] [l,r] [l,r],只有 l a s t i < l , ( l ≤ i ≤ r ) last_i < l, (l\leq i\leq r) lasti<l,(lir) 的位置才能产生贡献。
不难发现,这是一个经典的二维偏序问题。离线下来随便维护一下就行。

但是如果题目要求强制在线,我们就可以用主席树来解决。用权值线段树维护 l a s t i last_i lasti,用每一个根代表 i i i,查询只需要查询根的范围在 r o o t l root_l rootl ~ r o o t r root_r rootr l a s t i ≤ l − 1 last_i \leq l-1 lastil1 的答案即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define int long long
struct Seg
{
	int ls,rs,val;
	Seg()
	{
		ls=rs=val=0;
	}
};
vector<Seg> tr;
vector<int> root;
int insert(int u,int st,int ed,int x)
{
	tr.push_back(tr[u]);
	u=tr.size()-1;
	tr[u].val++;
	if(st==ed) return u;
	int mid=st+ed>>1;
	if(x<=mid)
		tr[u].ls=insert(tr[u].ls,st,mid,x);
	else
		tr[u].rs=insert(tr[u].rs,mid+1,ed,x);
	return u;
}
int query(int u,int v,int st,int ed,int l,int r)
{
	if(l<=st&&ed<=r)
	{
//		cout<<st<<" "<<ed<<" "<<tr[v].val<<" "<<tr[u].val<<"\n";
		return tr[v].val-tr[u].val;
	}
	int mid=st+ed>>1;
	int res=0;
	if(mid>=l)
		res+=query(tr[u].ls,tr[v].ls,st,mid,l,r);
	if(mid<r)
		res+=query(tr[u].rs,tr[v].rs,mid+1,ed,l,r);
	return res;
}
void O_o()
{
	int n;
	cin>>n;
	vector<int> a(n+1),ls(n+1);
	map<int,int> mp;
	for(int i=1; i<=n; i++)
	{
		cin>>a[i];
		ls[i]=mp[a[i]];
		mp[a[i]]=i;
	}
	root.clear(); tr.clear();
	root.push_back(0);
	tr.push_back(Seg());
	for(int i=1; i<=n; i++)
	{
//		int t=;
		root.push_back(root.back());
		root[i]=insert(root[i-1],0,n,ls[i]);
	}
	int q;
	cin>>q;
	while(q--)
	{
		int l,r;
		cin>>l>>r;
		cout<<query(root[l-1],root[r],0,n,0,l-1)<<"\n";
	}
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	cout<<fixed<<setprecision(12);
	int T=1;
//	cin>>T;
	while(T--)
	{
		O_o();
	}
}

CF786C

在这里插入图片描述
在这里插入图片描述

思路

很显然,线段的个数是调和级数 O ( n log ⁡ n ) O(n\log n) O(nlogn)
当左端点固定时,右端点可以用二分来确定
但是主席树+二分是 O ( log ⁡ 2 n ) O(\log^2n) O(log2n) 的,无法接受。
怎么样把它变成主席树上二分呢?其实用线段树维护 i i i,每一棵线段树对应一个 l a s t i last_i lasti 就好啦
时间复杂度 O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n)

代码

#include<bits/stdc++.h>
using namespace std;
#define int long long
struct Seg
{
	int ls,rs,val;
	Seg()
	{
		ls=rs=val=0;
	}
};
vector<Seg> tr;
vector<int> root,id;
int insert(int u,int st,int ed,int x)
{
	tr.push_back(tr[u]);
	u=tr.size()-1;
	tr[u].val++;
	if(st==ed) return u;
	int mid=st+ed>>1;
	if(mid>=x)
		tr[u].ls=insert(tr[u].ls,st,mid,x);
	else
		tr[u].rs=insert(tr[u].rs,mid+1,ed,x);
	return u;
}
//int query(int u,int v,int st,int ed,int l,int r)
//{
//	if(l<=st&&ed<=r)
//	{
//		return tr[v].val-tr[u].val;
//	}
//	int mid=st+ed>>1;
//	int res=0;
//	if(mid>=l)
//		res+=query(tr[u].ls,tr[v].ls,st,mid,l,r);
//	if(mid<r)
//		res+=query(tr[u].rs,tr[v].rs,mid+1,ed,l,r);
//	return res;
//}
array<int,2> find(int u,int v,int st,int ed,int l,int r,int k)//pos,val
{
	if(ed<l||st>r||k<=0) return {0,0};
	if(st==ed)
	{
		return {st,tr[v].val-tr[u].val};
	}
	int mid=st+ed>>1;
	if(l<=st&&ed<=r)
	{
		int res=tr[tr[v].ls].val-tr[tr[u].ls].val;
		if(res>=k)
			return {find(tr[u].ls,tr[v].ls,st,mid,l,r,k)[0],tr[v].val-tr[u].val};
		else
			return {find(tr[u].rs,tr[v].rs,mid+1,ed,l,r,k-res)[0],tr[v].val-tr[u].val};
	}
	auto lres=find(tr[u].ls,tr[v].ls,st,mid,l,r,k);
	auto rres=find(tr[u].rs,tr[v].rs,mid+1,ed,l,r,k-lres[1]);
	return {max(lres[0],rres[0]),lres[1]+rres[1]};
}
void O_o()
{
	int n;
	cin>>n;
	vector<int> a(n+1),ls(n+1);
	map<int,int> mp;
	vector<vector<int>> p(n+1);
	for(int i=1; i<=n; i++)
	{
		cin>>a[i];
		ls[i]=mp[a[i]];
		mp[a[i]]=i;
		p[ls[i]].push_back(i);
	}
	tr.assign(1,Seg());
	root.assign(1,0);
	id.assign(n+1,0);
	for(int i=0; i<=n; i++)
	{
		for(auto x:p[i])
		{
			root.push_back(root.back());
			root[root.size()-1]=insert(root[root.size()-1],1,n+1,x);
		}
		id[i]=root[root.size()-1];
	}
	for(int k=1; k<=n; k++)
	{
		int now=1,ans=0;
		while(now<=n)
		{
			now=find(0,id[now-1],1,n+1,now,n+1,k+1)[0];
			ans++;
		}
		cout<<ans<<" ";
	}
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
	cout<<fixed<<setprecision(12);
	int T=1;
//	cin>>T;
	while(T--)
	{
		O_o();
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值