联合权值

16 篇文章 0 订阅
13 篇文章 0 订阅

题目描述

无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值。

请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入输出格式

输入格式:
输入文件名为link .in。

第一行包含1 个整数n 。

接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。

最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。

输出格式:
输出文件名为link .out 。

输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值

和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007 取余。

对于30% 的数据,1 < n≤ 100 ;

对于60% 的数据,1 < n≤ 2000;

对于100%的数据,1 < n≤ 200 , 000 ,0 < wi≤ 10, 000 。

思路:

最终还是看了一个dark♂lao的题解

这是一棵树,一开始我想用树形DP,但我不想打dfs啊!

但是,我们可以枚举点和点之间的权值,再乘2。
O(n^2),会炸!

于是大佬说“我们可以使用乘法结合律和前缀和的思想。对于一个点,因为用邻接表存储,所以线性扫过所有与他相连的点,然后动态更新目前的和与目前这些点中的最大值,然后再到下一个点时,将下一个点的权值与这两个值相乘,然后做相应的处理就行了。”
so,下为代码。。。

代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
using namespace std;
struct E
{
    int t,nexty;
    E(){t=nexty=0;}
}e[1000000];
int h[300000],cnt=0,n,a,b;
long long sum=0,maxn=0,rmax,rsum,num,w[300000];
void add(int a,int b)
{
    cnt++;
    e[cnt].t=b,e[cnt].nexty=h[a];
    h[a]=cnt;
}
int main()
{

    scanf("%d",&n);
    for(int i=0;i<n-1;i++)
    {

        scanf("%d%d",&a,&b);
        add(a,b),add(b,a);

    }
    for(int i=1;i<=n;i++)scanf("%lld",&w[i]);
    for(int i=1;i<=n;i++)
    {

        num=h[i];
        rsum=(rmax=w[e[num].t])%10007;
        num=e[num].nexty;
        for(;num!=0;num=e[num].nexty)
        {

            sum=(sum+rsum*w[e[num].t])%10007;
            maxn=max(maxn,rmax*w[e[num].t]);
            rsum=(rsum+w[e[num].t])%10007;
            rmax=max(rmax,w[e[num].t]);

        }

    }
    //printf("%lld %lld",maxn,(sum*2)%10007);
    cout<<maxn<<' '<<sum*2%10007;
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值