Description
某天,情报局得到了一份秘密文件。文件的内容是加密后的全部由大写字母组成字符串。情报局局长小明想将其发送给远在东方神秘的XX大陆上的老朋友小刘来解密。然而若字符串太长,则需要很长的发送时间,太不安全了,因此小明想尽量将其缩短。于是小明制定了这样一个缩短规则:若一个字符串t连续出现k次,则可以用k(t)进行说明。如ABABAB可以缩成3(AB)。当然,重复缩短是允许的,如ABABABAAAAAAABABABAAAAAA可以缩成2(3(AB)6(A))
现在,小明想知道,对于给定的字符串,最短可以缩成什么样子。
Input
输入仅一行,为给定的字符串。
Output
输出仅一行,为经过缩短操作后的字符串。
若有多解,输出任意解即可。
Sample Input
AAAAAAAAAABABABCCD
Sample Output
9(A)3(AB)CCD
Hint
对于100%的数据,字符串的长度L<=100。
思路
区间DP
设f[i][j]为区间i–j的最小长度
则可以枚举断点k,用f[i][k]+f[k+1][j]来更新
如果区间i–j是由多段重复的子串构成,则可以更新答案
代码
#include <cstdio>
#include <iostream>
#include <cstring>
#define N 110
using namespace std;
int len;
string f[N][N],s;
bool check(int l,int r,int L,int R)
{
if((r-l+1)%(R-L+1)) return 0;
for(int i=l; i<=r; i++) if(s[i]!=s[(i-l)%(R-L+1)+L]) return 0;
return 1;
}
string change(int x)
{
string t;
for(; x; x/=10) t=char(x%10+'0')+t;
return t;
}
string dfs(int l,int r)
{
if(l==r) return s.substr(l,1);
if(f[l][r].length()>0) return f[l][r];
f[l][r]=s.substr(l,r-l+1);
for(int i=l; i<r; i++)
if(f[l][r].length()>dfs(l,i).length()+dfs(i+1,r).length())
f[l][r]=dfs(l,i)+dfs(i+1,r);
for(int i=l; i<r; i++)
if(check(l,i,i+1,r))
{
string str=change((r-l+1)/(r-i))+"("+dfs(i+1,r)+")";
if(f[l][r].length()>str.length()) f[l][r]=str;
}
return f[l][r];
}
int main()
{
cin>>s;
len=s.length();
cout<<dfs(0,len-1);
}