题目
https://www.luogu.org/problemnew/show/P2657
思路
首先处理一个dp数组,设dp[i][j]为长度为i中最高位是j的windy数的个数
dp[i][j]=sum(dp[i-1][k]) (abs(j-k)>=2)
然后数位DP
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int p,q,dp[15][15],a[15];
void init()
{
for(int i=0;i<=9;i++) dp[1][i]=1;
for(int i=2;i<=10;i++)
{
for(int j=0;j<=9;j++)
{
for(int k=0;k<=9;k++)
{
if(abs(j-k)>=2) dp[i][j]+=dp[i-1][k];
}
}
}
}
int work(int x)
{
memset(a,0,sizeof(a));
int len=0,ans=0;
while(x)
{
a[++len]=x%10;
x/=10;
}
for(int i=1;i<=len-1;i++)
{
for(int j=1;j<=9;j++)
{
ans+=dp[i][j];
}
}
for(int i=1;i<a[len];i++)
{
ans+=dp[len][i];
}
for(int i=len-1;i>=1;i--)
{
for(int j=0;j<=a[i]-1;j++)
{
if(abs(j-a[i+1])>=2) ans+=dp[i][j];
}
if(abs(a[i+1]-a[i])<2) break;
}
return ans;
}
int main()
{
init();
cin>>p>>q;
cout<<work(q+1)-work(p)<<endl;
return 0;
}