Atcoder Beginner 094 A B C D 题解

这本来是可以AK然后暴涨一波的一场比赛,D题WA到比赛结束也没过。。。赛后六分钟终于查出了bug。。。竟然因为遍历的时候用min维护没加等号。。。A题脑残题意又让我白WA1发,唉...这场打的是真的难受。。。放一下题解:

< A >

题意:

给三个数a, b, x, 猫有 a 只, b可能有猫可能有狗,x是最后要确定达到的猫的数量,问能否满足题意。

思路:

就是a能否在加上b的一部分以后到达x, 首先如果 x 比 a 小就永远挫掉。在x >= a的基础上满足a + b >= x即可。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int a, b, c;
 
int main() {
    while(~scanf("%d %d %d", &a, &b, &c)) {
        if(b >= c - a && c >= a) puts("YES");
        else puts("NO");
    }
    return 0;

}


< B >

题意:

有一排 n + 1 个格子,你的起点是 x,你最后要走到 0 或 n这个位置,给一个m值,在m个格子处,设有收费站,问满足题意最小花费是多少。

思路:

记一个t[ ]数组将有收费站的格子标记为1,其余为0,记两个值c1, c2,分别记录从位置x开始向两端遍历所需花费,取两者最小值即为答案。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int n, m, x;
int a[120];
int t[120];
 
int main() {
    while(~scanf("%d %d %d", &n, &m, &x)) {
        memset(t, 0, sizeof(t));
        for(int i = 0; i < m; i++) scanf("%d", &a[i]);
        for(int i = 0; i < n; i++) t[a[i]] = 1;
        int c1 = 0, c2 = 0;
        for(int i = x; i < n; i++) {
            if(t[i] == 1) c1++;
        }
        for(int i = x; i > 0; i--) {
            if(t[i] == 1) c2++;
        }
        printf("%d\n", min(c1, c2));
    }
    return 0;

}


< C >

题意:

给一个数列,n个数,每次分别去掉第 i 个位置的数,问去掉后序列的中位数分别是多少。

思路:

先sort快排一下,记两个数为原序列中位数:int p1 = a[n / 2], p2 = a[n / 2 + 1];

然后从1 ~ n遍历,如果a[i]不大于 p1 ,即不大于前中位数,删掉它以后,新中位数会右偏,即从p1偏到p2;

若a[i] 不小于 p2, 即不小于后中位数,删除后,新中位数左偏,即从p2偏到p1.

手推几组样例就可以得出该规律了。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int Maxx = 2e5 + 7;
const int Inf = 1e9 + 7;
int n;
int a[Maxx];
int t[Maxx];
 
int main() {
    while(~scanf("%d", &n)) {
        for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
        for(int i = 1; i <= n; i++) t[i] = a[i];
        sort(a + 1, a + n + 1);
        int p1 = a[n / 2], p2 = a[n / 2 + 1];
        for(int i = 1; i <= n; i++) {
            if(t[i] <= p1) printf("%d\n", p2);
            else if(t[i] >= p2) printf("%d\n", p1);
        }
    }
    return 0;

}


< D >

题意:

给一串序列,从中选出两个数,要求他们组合数最大,输出这俩数,大的在前。

思路:

组合数有个性质,那就是越靠近中间越大,并不需要算C几几那样比较,比如C11 1 和 C11 10 肯定没有C11 5 和 C11 6 大。

越靠近中间就越趋近极值,所以只需要记一个位置以靠近中间维护即可。如果只有两个数需要单独判一下。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int Maxx = 1e5 + 7;
const int Inf = 1e9 + 7;
int n;
int a[Maxx];
 
int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    sort(a + 1, a + n + 1);
    int t = a[n] / 2;
    int min = Inf;
    int p;
    for(int i = 1; i <= n; i++) {
        if(abs(a[i] - t) <= min) {
            min = abs(a[i] - t);
            p = a[i];
        }
    }
    if(n == 2) printf("%d %d\n", a[2], a[1]);
    else printf("%d %d\n", a[n], p);
}

AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值