- 博客(6)
- 资源 (12)
- 收藏
- 关注
原创 CSND Python技能树模块使用|Python 技能树测评
Python 技能树测评1.模块结构Python技能树用户结构:常用内置函数的下级菜单:(参考资料,集合了该知识点内的相关文章,也就是主要的学习对象)练习题:测试学习效果编程选择题,对比4个选项中的程序,选出正确答案,可以选择复制选项中的程序,到本地IDE中运行,测试。交流讨论区:2.模块使用体验 作为一个初学者来说,现在的python技能树模块能用,上手容易,几乎没有学习成本。但是不好用,作为Python学习的辅助工具是个不错的选择,毕竟庞大的资料库,解决Python学习中
2021-09-29 18:57:53
1774
1
原创 Windows10下手动安装CUDA10.1并在Anaconda 以及pycharm 中搭建TensroFlow2.1.0环境
1.系统准备1.1 检查电脑GPU支持的CUDA版本对有安装了NVIDIA显卡的电脑,需检查当前显卡驱动支持的CUDA版本,然后才能确定当前电脑能装的CUDA版本以及对应的Tensorflow版本、python版本,这些软件符合要求才能配合使用。桌面**右键**打开NVIDIA控制面板:1.2 不同CUDA版本支持的tensorflow-gpu版本和python版本Tensorflow_gpu 2.0以上版本需要的环境支持列表如下:详细Win10环境下搭建TensorFlow方法可以 参考
2021-08-21 09:40:54
746
1
原创 Anaconda环境下tensorflow1.12.0保姆式安装及相关奶妈级配置
1.安装Anaconda 并更改默认镜像环境1.1 下载最新的Anaconda安装文件Anaconda下载网址:https://www.anaconda.com/products/individual#Downloads按照操作系统选择对应的Anaconda版本(我自己选择的版本如上图红色方框所示)注意对应的Python版本(该Anaconda对应的Python版本是Python 3.8)1.2 安装Anaconda右键Anaconda程序,到此Anaconda
2021-08-14 21:35:05
10025
3
原创 numpy随机数
numpy随机数3.1 np.random.permutation()——根据给定的一个数值(一般是样本数量m),得到一个从0到m(不包含m)中所有数字组成的一组乱序列表格式:np.random.permutation(m)import numpy as npnp.random.seed(1)m = 10list_m = np.random.permutation(m)print("list_m=", list_m)print("type(list_m)=", type(list_m))
2021-07-30 11:55:27
257
原创 深度学习中用到的numpy命令数组运算部分命令汇总
numpy数组中数字运算 命令汇总2.1 np.square()——对数组中每一个元素平方,返回一个新数组格式:np.square(a)import numpy as npa = np.arange(1, 7).reshape(2, 3)s = np.square(a) #对a中的每一个元素平方,形成新的数组返回给sprint("a=\n", a, "\nb=\n", s)结果:a=s=[[1 2 3] [4 5 6]][[ 1 4 9] [16 25 36]]
2021-07-30 11:53:24
2092
原创 深度学习中用到的numpy数组格式转换命令汇总
numpy格式转换相关命令1.1 np.squeeze()——从数组的形状中删除单维度条目,即把shape中为1的维度去掉格式:np.squeeze(a,axis=None) 1.a表示输入的数组; 2.axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错; 3.axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目; 4.返回值:数组; 5.不会修改原数组;import num
2021-07-30 11:48:16
1490
阿里天池 Tensorflow2.0 教程笔记:卷积神经网络.md
2021-09-05
阿里天池 Tensorflow2.0 教程笔记:模型的加载与保存.md
2021-09-07
Windows10下手动安装CUDA10.1并在Anaconda 以及pycharm 中搭建TensroFlow2.1.0环境
2021-08-21
Win10中Anaconda软件平台中tensorflow1.12.0的安装.md
2021-08-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人