cf 1538D - Another Problem About Dividing Numbers

该博客详细解析了Codeforces竞赛中题号为1538D的问题,题目要求在限定操作步数内使两个数相等,通过分解质因数的方法确定最小和最大操作步数。博主提供了思路分析和解决方案,并特别指出当步数为1且初始两数相等时的特殊情况。
摘要由CSDN通过智能技术生成

1538D - Another Problem About Dividing Numbers

题目链接
题意:给a ,b 两个数, 要求在恰好 k 步操作内使得 a, b相等, 操作为让 a 或 b 除去一个自身的因子。
思路:分解质因数,设 a ,b 的最大公因子为gcd,最少需要 2 − ( a = = g c d ) − ( b = = g c d ) 2 - (a == gcd) - (b == gcd) 2(a==gcd)(b==gcd) (记为minv)步使得两者相等,最多需要 c a l ( a / g c d ) + c a l ( b / g c d ) cal(a/gcd) + cal(b/gcd) cal(a/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值