爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
选出任一 x,满足 0 < x < N 且 N % x == 0 。
用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。
public class divisorGame {
/*
只要能找到一个数可以使i,使得dp[N-i]为false,即alice赢,alice就减去这个数,找不到则Alice输
不管N为多大的数两个人减那就只有两种情况 最后一次到Alice减只有两种情况还剩1,或2.(因为减去的
数不能等于现在的N)
而我们知道N=1和2时情况
*/
public static boolean divisorGame(int N){
if(N==1) return false;
if(N==2) return true;
boolean dp[]=new boolean[N+1];
dp[1]=false;
dp[2]=true;
for(int i=3;i<=N;i++){
dp[i]=false;
for(int j=1;j<i;j++){
if(i%j==0&&!dp[i-j]){
dp[i]=true;
break;
}
}
}
return dp[N];
}
/*
1.若N为奇数,则可以整除的为奇数。若可以整除,Alice先手减去奇数,得到偶数,则Bob只需每次减一直到2,Bob胜;Alice为奇数不能整除,则需每次减1,Bob先得到2,Bob胜。所以奇数的话Alice输。
2.若N为偶数,则其可以整除的为奇数或偶数。为保证胜利,Alice只需每次减一先得到2即可。如果Alice减去1得到奇数,由规则 1 可知,奇数的话先手会输(此时Bob先手)。所以偶数的话Alice会赢。
*/
public static boolean divisorGame1(int N){
return N%2==0;
}
}