动态规划刷题日记——divisorGame


    爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

选出任一 x,满足 0 < x < N 且 N % x == 0 。
用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。

 

 

public class divisorGame {

    /*
    只要能找到一个数可以使i,使得dp[N-i]为false,即alice赢,alice就减去这个数,找不到则Alice输
    不管N为多大的数两个人减那就只有两种情况 最后一次到Alice减只有两种情况还剩1,或2.(因为减去的        
    数不能等于现在的N)    
    而我们知道N=1和2时情况
     */
    public static boolean divisorGame(int N){
        if(N==1) return false;
        if(N==2) return true;
        boolean dp[]=new boolean[N+1];
        dp[1]=false;
        dp[2]=true;
        for(int i=3;i<=N;i++){
            dp[i]=false;
            for(int j=1;j<i;j++){
                if(i%j==0&&!dp[i-j]){
                    dp[i]=true;
                    break;
                }

            }
        }
        return dp[N];
    }
    /*
    1.若N为奇数,则可以整除的为奇数。若可以整除,Alice先手减去奇数,得到偶数,则Bob只需每次减一直到2,Bob胜;Alice为奇数不能整除,则需每次减1,Bob先得到2,Bob胜。所以奇数的话Alice输。
2.若N为偶数,则其可以整除的为奇数或偶数。为保证胜利,Alice只需每次减一先得到2即可。如果Alice减去1得到奇数,由规则 1 可知,奇数的话先手会输(此时Bob先手)。所以偶数的话Alice会赢。

     */
    public static boolean divisorGame1(int N){
        return N%2==0;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值