《人工智能及其应用》第4章书后题 | 西电《人工智能导论》作业

教材对应第6版。答案仅供参考,都是我从网上四处搜索和自己编的。

4-1计算智能的含义是什么?它涉及哪些研究分支?

4-2试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。

4-3人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域?

4-4简述生物神经元及人工神经网络的结构和主要学习算法。

4-5考虑一个具有阶梯形阈值函数的神经网络,假设

(1)用一常数乘所有的权值和阈值;

(2)用一常数加所有的权值和阈值。

试说明网络性能是否会变化?

4-6构作一个神经网络,用于计算含有两个输入的XOR函数。指定所用神经网络单元的种类。

4-7假定有一个具有线性激励函数的神经网络,即对于每个神经元,其输出等于常数c乘以各输入加权和。

(1)设该网络有个隐含层。对于给定的权W,写出输出层单元的输出值,此值以权W和输入层I为函数,而对隐含层的输出没有任何明显的叙述。试证明:存在一个不含隐含单位的网络能够计算上述同样的函数。

(2)对于具有任何隐含层数的网络,重复进行上述计算。从中给出线性激励函数的结论。

4-8试实现一个分层前馈神经网络的数据结构,为正向评价和反向传播提供所需信息。应用这个数据结构,写出一个神经网络输出,以作为一个例子,并计算该网络适当的输出值。

4-9什么是模糊性?它的对立含义是什么?

4-10什么是模糊集合和隶属函数或隶属度?

4-11模糊集合有哪些运算,满足哪些规律?

4-12什么是模糊推理?

4-13对某种产品的质量进行抽查评估。现随机选出5个产品x1,x2,x3,x4,x5进行检验,它们的质量情况分别为:

x1 = 80,x2 = 72,x3 = 65,x4 = 98,x5 = 53

这就确定了一个模糊集合Q,表示该组产品的“质量水平”这个模糊概念的隶属程度。试写出该模糊集。

4-14试述遗传算法的基本原理,并说明遗传算法的求解步骤。

4-15如何利用遗传算法求解问题?试举例说明求解过程。

4-16用遗传算法求f (x) = x cosx + 2的最大值。

4-17什么是人工生命?请按你的理解用自己的语言给人工生命下个定义。

4-18人工生命要模仿自然生命的特征和现象。自然生命有哪些共同特征?

4-19为什么要研究人工生命?

4-20人工生命包括哪些研究内容?其研究方法是什么?

 

 

 

 

为了构建一个能够计算两个输入的异或(XOR)逻辑的神经网络,我们将使用一种称为“前馈神经网络”(Feedforward Neural Network)的基本结构,特别是全连接层(Dense Layer),因为它们非常适合处理简单的逻辑运算。我们将使用Sigmoid激活函数,虽然现在更常用ReLU,但Sigmoid在二分类问中也能工作。 首先,我们需要导入所需的库,如NumPy进行数学运算,以及Keras(如果不在Jupyter notebook中,可能需要安装`tensorflow`库): ```python import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation ``` 接下来,定义模型: ```python # 初始化一个Sequential模型 model = Sequential() # 添加一层隐藏层,2个输入节点(对应于XOR的两个输入),4个神经元(你可以根据需要调整这个数目) model.add(Dense(units=4, input_dim=2)) # 使用Sigmoid激活函数,对于二分类问这是合适的 model.add(Activation('sigmoid')) # 输出层,只有1个神经元,因为我们只需要一个输出表示结果 # 对于XOR,输出层应该有2个神经元,每个神经元对应一个二进制位(0/1)。但是这里我们简化为1个,因为Sigmoid通常用于判断是否达到某个阈值 # model.add(Dense(units=1)) # 如果要使用这种方法,请保留这一行 # 还是使用Sigmoid,因为在异或问上,我们可以将其看作概率接近0或1 # model.add(Activation('sigmoid')) # 如果要使用这种方法,请保留这一行 # 最后,添加一个线性输出层,不使用激活函数,因为我们需要的是0和1而非概率 model.add(Dense(units=1)) model.add(Activation('linear')) ``` 训练模型之前,你需要准备数据集,包括输入(XOR的两个输入变量)和对应的标签(1表示异或结果为1,0表示结果为0)。然后你可以使用`model.compile()`、`fit()`等函数训练模型。 如果你想要演示整个过程,我可以帮你写一个简化的训练示例,不过你可能希望实际操作时自己处理数据。假设你已经有了一个名为`X_data`和`y_data`的数据集: ```python # 假设X_data和y_data已经准备好,分别包含输入和标签 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 二分类交叉熵损失和精度指标 # 训练模型,这里用一个简短的迭代次数 model.fit(X_data, y_data, epochs=500, batch_size=32) # 查看模型评估结果 test_loss, test_acc = model.evaluate(X_data, y_data) print(f'Test accuracy: {test_acc}') ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值