算法分析与设计
最小生成树 Prim算法
问题描述:
一个带权连通图,其中顶点集合为V,边集合为E,任选一些点∈V,边∈E,这些点,边构成的新图连通性不变并且边权最小。
下面是百度百科给出的描述:
在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 的 w(T) 最小,则此 T 为 G 的最小生成树。
算法思路:
Prim:
设集合U为图中任意一点,每次从集合V-U选择一个与V的距离最短的点加入U中,每次记录当前的边权和,重复上述操作,当V=U,就找到了一颗最小生成树。
具体步骤可以参照下面的样例
1.任取图中的一点,这里取1,加入U,标记为红色。
2.剩下的点中点6离U最近,加入U,将点边标记为红色。3.剩下的点中点2里U最近,加入U,标记。
剩下的点同理,直到构成一颗最小生成树。
这时红色的点和红色加粗的边就构成了一颗最小生成树。
核心伪代码:
Prim(){
vis[1]<-true
for i <-1 to n 1.do dis[i]mp[1][i]
for i<- 1to n 1.do
for j<-1 to n 1.do
选出最短边,记录下标pos<-j
end
vis[pos]<-true
MST+=dis[pos]
for j<-1 to n 1.do
if(!vis[j]&&j!=pos)
dis[j]<-min(dis[j],mp[pos][j])
end
end
}
时间复杂度:
Prim算法中每次加入一个点到点集U,每加入一个点,遍历剩下的点,更新每个点到这个集合的最小距离。一共n个点,分析得到算法复杂度为O(n^2)。
源码:
github:https://github.com/SpiritDemon-max/myText/blob/master/Prim.cpp