算法分析与设计 MST Prim

算法分析与设计

最小生成树 Prim算法

问题描述:

一个带权连通图,其中顶点集合为V,边集合为E,任选一些点∈V,边∈E,这些点,边构成的新图连通性不变并且边权最小。
下面是百度百科给出的描述:
在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 在这里插入图片描述的 w(T) 最小,则此 T 为 G 的最小生成树。

算法思路:

Prim:
设集合U为图中任意一点,每次从集合V-U选择一个与V的距离最短的点加入U中,每次记录当前的边权和,重复上述操作,当V=U,就找到了一颗最小生成树。
具体步骤可以参照下面的样例
在这里插入图片描述在这里插入图片描述
1.任取图中的一点,这里取1,加入U,标记为红色。
在这里插入图片描述在这里插入图片描述
2.剩下的点中点6离U最近,加入U,将点边标记为红色。3.剩下的点中点2里U最近,加入U,标记。
剩下的点同理,直到构成一颗最小生成树。
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
这时红色的点和红色加粗的边就构成了一颗最小生成树。

核心伪代码:

Prim(){
	vis[1]<-true
	for i <-1 to n 1.do dis[i]mp[1][i]
	for i<- 1to n 1.do 
		for j<-1 to n 1.do 
			选出最短边,记录下标pos<-j
		end
		vis[pos]<-true
		MST+=dis[pos]
		for j<-1 to n 1.do
			if(!vis[j]&&j!=pos) 
				dis[j]<-min(dis[j],mp[pos][j])
		end 
	end
}

时间复杂度:

Prim算法中每次加入一个点到点集U,每加入一个点,遍历剩下的点,更新每个点到这个集合的最小距离。一共n个点,分析得到算法复杂度为O(n^2)。

源码:

github:https://github.com/SpiritDemon-max/myText/blob/master/Prim.cpp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值