[Nowcoder] [牛客OI周赛1-提高组C] 序列 [计数dp]

题意:对于元素均为整数的长度为 n n n序列 A A A,定义 F ( A ) F(A) F(A)为一个 n × n n×n n×n矩阵s,满足
s i , j = S i g n ( A i − A j ) × m i n { ∣ A i − A j ∣ , k } s_{i,j}=Sign(A_i-A_j)×min\{|A_i-A_j|,k\} si,j=Sign(AiAj)×min{AiAj,k}
其中 S i g n ( x ) = { − 1 x &lt; 0 0 &ThickSpace;&ThickSpace;   x = 0 1 &ThickSpace;&ThickSpace;   x &gt; 0 Sign(x)=\begin{cases}-1\quad x&lt;0\\0\quad\;\;\ x=0\\1\quad\;\;\ x&gt;0\end{cases} Sign(x)=1x<00 x=01 x>0
如果两个序列的 F F F矩阵相等,称其相等
问有多少个互不相等的长度为n的序列满足对任意 i , j , ∣ A i − A j ∣ ≤ m i,j,|A_i-A_j|\le m i,j,AiAjm
答案对 998244353 998244353 998244353取模

先不考虑 F F F矩阵,只考虑单个 F ( A ) F(A) F(A)表示某个 A i − A j A_i-A_j AiAj
也就是说最大值 − - 最小值 ≤ m \le m m
所以要求的实际上是最大值 − - 最小值 ≤ m \le m m的长度为 n n n的序列的方案数 % 998244353 \%998244353 %998244353

如果两个序列的F矩阵相等,称其相等

所以把最小值当做0就好了。
仿佛可以用在 m + 1 m+1 m+1个空里面选 n n n个(可重)(有序)的思路来搞
虽说这好像是可重排列的定义,
但是要注意同一个元素选多次的情况会被重复计算。这个有序不大一样
况且 k k k m m m不能等同。

直接组合不行,考虑如何去重,比如使用 d p dp dp

可重+有序太难搞了,可以先当无序来做再算有序
先算有序时候的,也就是不重复的情况下那些数有多少种方案(无序)
i i i表示到第几种数, j j j表示和最小值的差,方案数 F [ i , j ] F[i,j] F[i,j]
F [ i , j ] = ∑ t = 1 j − 1 F [ i − 1 , t ] F[i,j]=\sum\limits_{t=1}^{j-1}F[i-1,t] F[i,j]=t=1j1F[i1,t]
F [ i , j ] = s u m [ j − 1 ] F[i,j]=sum[j-1] F[i,j]=sum[j1]
顺便可以前缀和,处理 j &gt; k j&gt;k j>k的部分。不过滚动是不行了,最后要用到二维

对于 j &gt; k j&gt;k j>k的部分先按正常方式搞,再减 ∑ t = 1 j − k − 1 F [ i − 1 , t ] \sum\limits_{t=1}^{j-k-1}F[i-1,t] t=1jk1F[i1,t]
(如果 i i i i − 1 i-1 i1的差大于 k k k,那 i − 1 i-1 i1的就转移不过来了)
这是 k k k m m m很重要的一处不同。

然后要把无序的 F [ i , j ] F[i,j] F[i,j]转化到最后的答案里边
n n n个位置放上 i i i种不同的数,这是第二类stirling数(相同盒子不同小球)
F [ i , j ] × S ( n , i ) F[i,j]×S(n,i) F[i,j]×S(n,i),这一步解决了相同的数的位置。

再用 i i i种不同的数枚举一下具体的大小关系,就乘上 i ! i! i!

所以 A n s = ∑ i = 1 n ∑ j = 0 m S ( n , i ) × i ! × F [ i , j ] Ans=\sum\limits_{i=1}^n\sum\limits_{j=0}^mS(n,i)×i!×F[i,j] Ans=i=1nj=0mS(n,i)×i!×F[i,j]

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<algorithm>
#include<iostream>
using namespace std;
#define mod 998244353ll
int n,m,k;
long long ans=0,
	f[2005]={}, //阶乘
	s[2005][2005]={}, //第二类stirling数 
	d[2005][2005]={}, //dp状态 
	sum[2005]={}; //dp前缀和 
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    
    f[1]=1; for(int i=2;i<=n;++i)f[i]=(f[i-1]*i)%mod;
	
    for(int i=1;i<=n;++i)
    {
    	s[i][1]=s[i][i]=1;
		for(int j=2;j<i;++j)
		{
			s[i][j]=(s[i-1][j-1]+j*s[i-1][j]%mod)%mod;
		}
	}
	
	d[1][0]=1;
	for(int i=2;i<=n;++i)
	{
		sum[0]=d[i-1][0];
		for(int j=1;j<=m;++j) sum[j]=(sum[j-1]+d[i-1][j])%mod, d[i][j]=sum[j-1];
		
		for(int j=k+1;j<=m;++j) d[i][j]=(d[i][j]+mod-sum[j-k-1])%mod; 
	}
	
	for(int i=1;i<=n;++i)
	for(int j=0;j<=m;++j)
	ans=(ans+(s[n][i]*f[i]%mod)*d[i][j]%mod)%mod;
	
	printf("%lld\n",ans);
	return 0;
}

转化后形式的无序情况

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值