[BZOJ1087] [SCOI2005] 互不侵犯King [状态压缩][dp]

[ L i n k \frak{Link} Link]

首先这样的问题第一个会想到有没有数学解,不过反正我是解不来的

这个范围很特殊,看到就应该有所考虑
暴搜? 2 81 \frak{2^{81}} 281肯定会炸。无效和重复计算的状态数太多了。
按行搜索?记录上一行的状态和剩下的 k \frak{k} k然后看看这一行能不能…?
记录上一行的状态显然可以状态压缩, k \frak{k} k的话就多开一维…一维…

状压 d p \frak{dp} dp
注意预处理状态减小时间复杂度。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<queue>
#include<cctype>
using namespace std;
int N,K,Lim;
long long ans=0;
int L[1024]={};
int B[1024]={};
long long F[10][1024][90]={};
#ifdef test
void out(int x)
{
	while(x)
	{
		cout<<(x&1);
		x>>=1;
	}
}
#endif
void pre(int step,int num,int cnt,bool cooldown)
{
	if(step==N)
	{
		L[++L[0]]=num;
		B[L[0]]=cnt;
		return;
	}
	if(!cooldown)pre(step+1,num|(1<<step),cnt+1,1);
	pre(step+1,num,cnt,0);
}
int main()
{
	scanf("%d%d",&N,&K); Lim=(1<<N)-1;
	pre(0,0,0,0);
	#ifdef test
	for(int i=1;i<=L[0];++i)out(L[i]),cout<<" "<<B[i]<<endl;
	#endif
	for(int i=1;i<=N;++i)
	{
		for(int j=1;j<=L[0];++j)
		{
			if(i==1)F[1][j][B[j]]=1;
			else for(int k=1;k<=L[0];++k)
			{
				for(int g=B[k];g<=K-B[j];++g)
				{
					if((L[j]&L[k])||(L[j]&(L[k]>>1))||(L[j]&(L[k]<<1)))continue;
					F[i][j][g+B[j]]+=F[i-1][k][g];
				}
			}
		}
	}
	for(int i=1;i<=L[0];++i)ans+=F[N][i][K];
	printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值