Link
https://www.lydsy.com/JudgeOnline/problem.php?id=3513
实际上就是要求
a
i
+
a
j
<
a
k
a_i+a_j<a_k
ai+aj<ak 其中
a
i
≤
a
k
,
a
j
≤
a
k
a_i\le a_k,a_j\le a_k
ai≤ak,aj≤ak
考虑
f
(
x
)
f(x)
f(x) 为
a
i
+
a
j
=
x
a_i+a_j=x
ai+aj=x 的方案数,再考虑
≥
x
\ge x
≥x 的木棍有
g
(
x
)
g(x)
g(x) 个
那么不合法的方案数为
∑
x
=
1
max
a
i
f
(
x
)
g
(
x
)
\sum\limits_{x=1}^{\max a_i}f(x)g(x)
x=1∑maxaif(x)g(x)
再考虑
a
(
x
)
a(x)
a(x) 表示有几根棍棍长度为
x
x
x
f
(
x
)
=
1
2
∑
r
=
1
x
−
1
a
(
r
)
a
(
x
−
r
)
−
[
2
∣
x
]
⋅
a
(
x
/
2
)
f(x)=\frac{1}{2}\sum\limits_{r=1}^{x-1}a(r)a(x-r)-[2|x]\cdot a(x/2)
f(x)=21r=1∑x−1a(r)a(x−r)−[2∣x]⋅a(x/2)
我果然是大常数选手……卡线过题(
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<cctype>
#include<ctime>
using namespace std;
#define getchar() (frS==frT&&(frT=(frS=frBB)+fread(frBB,1,1<<12,stdin),frS==frT)?EOF:*frS++)
char frBB[1<<12], *frS=frBB, *frT=frBB;
const double api = 2.0 * acos(-1.0);
inline void read(int& x)
{
x = 0; char ch = getchar(); bool w = 0;
while (!isdigit(ch)) w |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
w ? (x = -x) : 0;
}
const int MAXN = 282828;
int T, n, m, Lim = 1, Log = 0;
int Rev[MAXN];
struct Complex
{
double r, i;
inline Complex(const double& a = 0, const double& b = 0) { r = a, i = b;}
inline Complex operator + (const Complex& o) { return Complex(r + o.r, i + o.i);}
inline Complex operator - (const Complex& o) { return Complex(r - o.r, i - o.i);}
inline Complex operator * (const Complex& o) { return Complex(r * o.r - i * o.i, r * o.i + i * o.r);}
//下面三个不能写 const& 不然自乘可能会炸
inline void operator += (Complex o) { r += o.r, i += o.i;}
inline void operator -= (Complex o) { r -= o.r, i -= o.i;}
inline void operator *= (Complex o) { static double tr, ti; tr = r, ti = i; r = tr * o.r - ti * o.i, i = tr * o.i + ti * o.r;}
}a[MAXN], Wn[MAXN][2];
inline void FFT(Complex *a, const bool& Type = 0)
{
for (register int i = 0; i < Lim; ++i) if (Rev[i] > i) swap(a[Rev[i]], a[i]);
register Complex x;
for (register int Mid = 1, Len, qwq; Mid < Lim; Mid <<= 1)
{
Len = Mid << 1;
qwq = Lim / Len;
for (register int Pos = 0; Pos < Lim; Pos += Len)
{
for (register int Sub = 0; Sub < Mid; ++Sub)
{
x = Wn[qwq * Sub][Type] * a[Pos + Mid + Sub];
a[Pos + Mid + Sub] = a[Pos + Sub] - x;
a[Pos + Sub] += x;
}
}
}
}
long long F[MAXN], Total;
int G[MAXN], A[MAXN];
int main()
{
read(T);
while (T--)
{
read(n);
memset(a, 0, sizeof(a));
m = 0;
for (register int tem, i = 1; i <= n; ++i)
{
read(tem);
m = max(m, tem);
++a[tem].r;
}
for (register int i = 1; i <= m; ++i) A[i] = int(a[i].r);
G[m+1] = 0;
for (register int i = m; i >= 1; --i) G[i] = G[i+1] + A[i];
Lim = 1, Log = 0;
int temtem = m<<1;
while (Lim <= temtem) Lim <<= 1, ++Log;
for (register int i = 0; i < Lim; ++i) Rev[i] = (Rev[i>>1]>>1)|((i&1)<<(Log-1));
{
const double tpi = api / Lim;
register double tem = 0, cs, tm;
for (register int i = 0; i < Lim; ++i) cs = cos(tem), tm = sin(tem), Wn[i][0] = Complex(cs, tm), Wn[i][1] = Complex(cs, -tm), tem += tpi;
}
FFT(a);
for (register int i = 0; i < Lim; ++i) a[i] *= a[i];
FFT(a, 1);
for (register int i = 2; i <= m; ++i)
{
F[i] = (long long)(a[i].r / Lim + 0.5);
if (!(i&1)) F[i] -= A[i>>1];
F[i] >>= 1;
}
for (register int i = 1; i <= m; ++i) F[i] = F[i-1] + F[i] * G[i];
Total = 1ll * n * (n-1) * (n-2) / 6;
printf("%.7f\n", 1.0 * (Total - F[m]) / Total);
}
return 0;
}