P1734 最大约数和
题解:考虑和为 s s s的时候最大因数和。则有 d p [ s ] = m a x ( d p [ s − j ] + s u m [ j ] , d p [ s ] ) dp[s] = max(dp[s - j] + sum[j],dp[s]) dp[s]=max(dp[s−j]+sum[j],dp[s]),写完才发现就是个背包。。。(预处理一下因数和)注意 1 1 1的因数不包括它本身就没有了,所以 d p [ 1 ] = 0 dp[1] = 0 dp[1]=0。
代码
#include<bits/stdc++.h>
using namespace std;
int dp[1024], sum[1024];
int love(int s)
{
int ret = 0;
for(int i = 1; i < s; ++i) {
if(s % i == 0)
ret += i;
}
return ret;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.in","r",stdin);
#endif
int s;
cin>>s;
dp[1] = 0;
for(int i = 2; i <= s; ++i) {
sum[i] = love(i);
}
for(int i = 1; i <= s; ++i) {
for(int j = 1; j <= s; ++j) {
if(i >= j)
dp[i] = max(dp[i - j] + sum[j],dp[i]);
}
}
cout<< dp[s] <<endl;
return 0;
}