Codeforces Round 954 (Div. 3)

A. X Axis
题意:在一条x轴上给定三个点,找到一个点,使得: ∑ i = 1 3 ∣ x − a i ∣ \sum_{i=1}^{3}|x-ai| i=13xai最大。

解:注意到: 0 < = x < = 10 0<=x<=10 0<=x<=10,故遍历每个点计算即可。

B. Matrix Stabilization
题意:给定一个 n ∗ m n*m nm的矩阵,找到某个单元格 ( i , j ) (i,j) (i,j),与它相邻的单元格的值严格小于它的值,然后将该单元格的值一直减小直到不满足严格小于的条件;若有多个这样的单元格,从左到右、从上到下执行。问最后的矩阵如何。

解:若有这样一个单元格,那么这个单元格一定会变成与它相邻的单元格中的最大值。
顺序检查修改即可。

C. Update Queries
题意:给定长度为 n n n的字符串 s s s m m m个整数 i n d i ind_{i} indi,其中 i n d i ind_{i} indi对应 s s s中的索引,以及长度为 m m m的字符串 c c c,可以任意排列 i n d ind ind数组,按照顺序执行: s [ i n d i ] = c [ i ] s[ind_{i}]=c[i] s[indi]=c[i],问可以得到字典序最小的字符串 s s s

解:首先可以对字符串 c c c按照字典序排序,因为 i n d ind ind数组可以任意打乱。字符串 s s s中只有 i n d i ind_{i} indi位置上会改变,按照排序后的字符串依次放入即可。需要注意的是我们需要对 i n d ind ind数组去重,因为存在覆盖关系。

AC代码:

void solve()
{
      int n, m; cin >> n >> m;
      string s; cin >> s;
      vector<int> ind(m);
      forn (i, 0, m) cin >> ind[i];
      set<int> pos;
      forn (i, 0, m) pos.insert(ind[i]);
      string c; cin >> c;
      sort(all(c)); int cnt = 0;
      for(auto i : pos) {
            s[i - 1] = c[cnt++];
      }
      cout << s << endl;
}

D. Mathematical Problem
题意:给定长度为 n n n的字符串,向其中插入 n − 2 n-2 n2 + + + × \times ×,使得运算式结果最小。

解:因为插入 n − 2 n-2 n2个符号,那么一定有一个两位数 (但值可能只有一位),那么我们可以枚举两位数。我们可以贪心的将每个不为 1 1 1的数加入到结果中,将每个 1 1 1不计入(使用乘号),需要注意的是当我们枚举的这个数为 01 01 01时,需要对答案减一,因为我们可以使用乘号忽略本身。

AC代码:

void solve()
{
      int n; cin >> n;
      string s; cin >> s;
      if(n == 2) {
            cout << stoll(s) << endl;
            return;
      } else {
            forn (i, 0, n) {
                  if(s[i] == '0') {
                        if(n != 3 || i != 1) {
                              cout << 0 << endl;
                              return;
                        }
                  }
            }
            int ans = 1e9;
            forn (i, 2, n + 1) {
                  string c = "";
                  c.push_back(s[i - 2]), c.push_back(s[i - 1]);
                  int num = stoll(c);
                  int flag = 0;
                  if(num == 1) num = 0, flag = 1;
                  forn (j, 0, n) {
                        if(j == i - 2 || j == i - 1) continue;
                        if(s[j] == '1') {
                              if(flag) {num += 1; continue;}
                              else continue;
                        }
                        num += s[j] - '0';
                  }
                  ans = min(ans, num);
            }
            cout << ans << endl;
      }
}

E. Beautiful Array
题意:给定一个数组 a a a k k k,做任意次如下操作: a i = a i + k a_{i}=a_{i}+k ai=ai+k。定义美丽数组:对于 1 ≤ i ≤ n 1\leq i \leq n 1in b i = b n − i + 1 b_{i}=b_{n-i+1} bi=bni+1.问至少多少次操作可以将数组 a a a变为美丽数组。

解:我们需要两两配对,使得 a i = a j + x k a_{i}=a_{j}+xk ai=aj+xk,即 a i ≡ a j ( m o d k ) a_{i} \equiv a_{j}(mod \quad k) aiaj(modk),余数相同的可以放入一组中,并记录下 b i = a i / k b_{i}=a_{i}/k bi=ai/k。若组中元素数量为偶数,那么按大小排序后顺序两两配对为最优,即 b 2 − b 1 + b 4 − b 3 . . . + b m − b m − 1 b_{2}-b_{1}+b_{4}-b_{3}...+b_{m}-b_{m-1} b2b1+b4b3...+bmbm1 m m m为一组中的元素数量;若组中元素数量为奇数,那么有一个无需配对,可以将其删掉并按照偶数的方案计算。可以枚举被删的数字,但如果我们每次都按照这个方案计算,时间复杂度为 O ( n 2 ) O({n^2}) O(n2),我们无法接受。观察可知,删除第奇数个一定优于删掉第偶数个,如图:
在这里插入图片描述

我们可以考虑前缀和来减低复杂度:创建一个 d d d数组, d i = b i − b i − 1 d_{i}=b_{i}-b_{i-1} di=bibi1,创建 s 1 s1 s1 s 2 s2 s2数组,对于 1 ≤ i < d . s i z e ( ) 1 \leq i < d.size() 1i<d.size(),当 i i i为奇数时, s 1 ( i + 1 ) / 2 = s 1 ( i − 1 ) / 2 + d i s1_{(i+1)/2}=s1_{(i-1)/2}+d_{i} s1(i+1)/2=s1(i1)/2+di; 当 i i i为偶数时, s 1 i / 2 = s 1 ( i − 1 ) / 2 + d i s1_{i/2}=s1_{(i-1)/2}+d_{i} s1i/2=s1(i1)/2+di,这样得到 d d d数组奇数索引下的前缀和以及偶数索引下的前缀和。当我们删除第一个数,得到的结果为 d 2 + d 4 + . . . d_{2}+d_{4}+... d2+d4+...,即 s 2 k s2_{k} s2k,当我们删除第二个数时,得到的结果为 d 1 + d 4 + . . . d_{1}+d_{4}+... d1+d4+...,即 s 1 1 + ( s 2 k − s 2 1 ) s1_{1}+(s2_{k}-s2_{1}) s11+(s2ks21),以此类推取 m i n min min即可。
讨论无解情况:当 n n n为偶数时,分组后每个组的元素个数都必须为偶数才能成功配对;当 n n n为奇数时,至多一个组的元素个数为奇数,否则无解。

AC代码:

void solve()
{
      int n, k, flag; cin >> n >> k;
      vector<int> a(n);
      forn (i, 0, n) cin >> a[i];
      map<int, int> mr;
      forn (i, 0, n) mr[a[i] % k]++;
      if(n & 1) flag = 1; 
      else flag = 0;
      for(auto &[x, y] : mr) {
            if(y % 2 != 0) flag -= 1;
      }
      if(flag < 0) {
            cout << -1 << endl;
            return;
      }
      ll ans = 0; map<int, vector<int>> mp;
      forn (i, 0, n) {
            mp[a[i] % k].push_back(a[i] / k);
      }
      for(auto &[x, b] : mp) {
            sort(all(b));
            if(b.size() % 2 == 0) {
                  for(int i = 0; i < b.size(); i += 2) {
                        ans += b[i + 1] - b[i];
                  }
            } else {
                  if(b.size() != 1) {
                        vector<int> d(b.size());
                        forn (i, 1, d.size()) d[i] = b[i] - b[i - 1];
                        vector<ll> s1(d.size() / 2 + 1), s2(d.size() / 2 + 1);
                        forn (i, 1, d.size()) {
                              if(i & 1) s1[(i + 1) / 2] = s1[(i - 1) / 2] + d[i];
                              else s2[i / 2] = s2[(i - 1) / 2] + d[i];
                        }
                        ll num = 1e15;
                        for(int i = 0; i < b.size(); i += 2) {
                              int l = i / 2; int r = d.size() / 2;
                              num = min(num, s2[r] - s2[l] + s1[l]);
                        }
                        ans += num;
                  }
            }
      }
      cout << ans << endl;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MuzJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值