最关键的思路还是要注意偏导为0这个条件,然后推导出总体的结论。
证明的技巧就是对比题目要我证明的式子,和我能推到出来最浅显的结果之间的差距,就是里面的(*)式,然后从这里入手利用偏导为0的条件。
这个偏导为0是OLS普通线性回归(最小二乘法)的本质:对β0和β1的这两个parameters的estimate是满足residual sum of square最小化的
最关键的思路还是要注意偏导为0这个条件,然后推导出总体的结论。
证明的技巧就是对比题目要我证明的式子,和我能推到出来最浅显的结果之间的差距,就是里面的(*)式,然后从这里入手利用偏导为0的条件。
这个偏导为0是OLS普通线性回归(最小二乘法)的本质:对β0和β1的这两个parameters的estimate是满足residual sum of square最小化的