- 博客(80)
- 资源 (4)
- 收藏
- 关注
原创 xgboost学习笔记
基础知识一、决策树1. 决策树的定义 分类决策树模型是一种描述对实例进行分类的树形结构,决策树由结点(node)和有向边(directed edge)组成。结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。2.决策树是怎么工作的 决策树学习本质上是从训练数据集中归纳出一组分类规则。与训练数据集不相矛盾的决策树(即能对训练数据进行正确分类的决策树)可能有多个,也可能一个都没有。我们需要的是一个与训练数据矛盾较小的决策树
2022-02-02 22:11:18 1659
原创 回溯算法总结
一. 回溯算法简介回溯算法就是我们常说的DFS算法,本质上是一种暴力穷举算法。解决一个回溯问题,实际上就是一个决策树的遍历过程。路径: 也就是已经做出的选择选择列表: 也就是你当前可以做的选择结束条件: 也就是到达决策树底层,无法再做选择的条件。二、回溯算法的框架result = []def backtrack(路径, 选择列表): if 满足结束条件: result.add(路径) return for 选择 in 选择列表: 做选择 backt
2022-02-01 21:56:05 336
原创 动态规划算法总结
一、模板# 初始化 base casedp[0][0][...] = base# 进行状态转移for 状态1 in 状态1的所有取值: for 状态2 in 状态2的所有取值: for ... dp[状态1][状态2][...] = 求最值(选择1, 选择2,...)二、解题套路明确【状态】明确【选择】明确dp函数/数组的定义明确base case三、状态压缩如果计算状态dp[i][j]需要的都是dp[i][j]相邻的状态,那么就可以使用状态压缩技巧,将
2021-12-03 10:13:58 1070 3
原创 AI+语音方面总结(一)
开始总结语音相关知识点1、语音分离和增强的本质是什么?a) 一个是分类,一个是回归。b) 分类和回归的区别在于输出变量的类型。定量输出称为回归,或者说连续变量预测;定性输出称为分类,或者说是离散变量预测。c) 本质一样,都要建立映射关系。在实际操作中,可以相互转化。2、TCN和LSTM的区别是什么?a) TCN是时序卷积网络(Temporal convolutional network),主要由因果卷积(causal convolution)和空洞卷积(Dilated Convolution.
2021-10-27 20:48:44 2736
原创 误差反向传播算法笔记
复习一下基础。一、机器学习模型的处理方法(1) 数据预处理: 经过数据的预处理,如去除噪声等。比如在文本分类中,去除停用词等。(2) 特征提取:从原始数据中提取一些有效的特征。比如在图像分类中,提取边缘、尺度不变特征变换(Scale Invariant Feature Transform, SIFT)(3)特征转换:对特征进行一定的加工,比如降维和升维。降维包括特征抽取(Feature Extraction)和特征选择(Feature Selection)两种途径。常用的特征转换方法有主成分分析、线
2021-09-15 21:15:05 1902
原创 Windows下重新AI相关配置环境变量记录【未完】
一、安装pytorch进官网,https://pytorch.org/get-started/locally/ ,找到自己想要的版本。1、pytorch版本1.9.0,cuda版本1.0.2pip3 install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html2、测试import torchx = tor
2021-09-15 10:37:31 214
原创 《失控》---自然之流变
一、均衡即死亡(1)均衡态不仅意味着死亡,它本身就是死亡状态。系统要变得丰富,就需要时间和空间上额变化。但变化太多也不行,你会一下从生态渐变群转到生态交错群。二、谁先出现,稳定性还是多样性?(1)自然本身无论是形式,结构还是构成都不会恒久不动,自然无时无地不在变化。三、生生不息的生命(1)生命是一种连结成网的东西—是分布式的存在。它是在时空中延展的单一有机体。没有单独的生命。哪里也看不到单个有机体的独奏。生命总是复数形式。生命承接着彼此的联系,链接诶,还有多方共享。(2)生命将自己分散成为显在的
2021-08-27 17:58:21 235
原创 《失控》---有心智的机器
一、有心智的机器1、当某个系统能够正常运转时,不要扰乱它;要以它为基层来构建。在自然体系中,改良就是在现存的调试好的系统上“打补丁”。原先的层级继续运作。甚至不会注意到(或不必注意到)其上还有新的层级。2、包容架构如果把国家看成一台机器,你可以用包容架构这么建造:你从乡镇开始。先解决乡镇的后勤:基本工作包括整修街道、敷设水电管道、提供照明,还要指定法律。当你有了一些运转良好的乡镇,就可以设立郡县。在保证乡镇正常运作的基础上,你在郡县的范围内设立法院、监狱和学校,在乡镇的层级智商增加了一层复杂度。就算
2021-08-22 20:44:59 209
原创 李宏毅机器学习课程2021---Architecture Design(Depthwise Separable Convolution)
一、Standard CNN每个filter其实是一个立方体,4个filter参数共有72个。filter和channel是没有关系的。二、Depthwise Separable ConvolutionDepthwise Convolution有多少个channel就有多少个filter,Pointwise Convolutionfilter的大小只能是1×11\times 11×1三、参数量的差异(一和二)四、Low Rank approximation原先是W,现在
2021-08-22 17:00:18 289
原创 深度学习中的易混淆知识点总结(二)
一、真实值、观测值、预测值(1)真实值表示真实世界中的数据(总体),是肉眼看到的,没有任何误差的。(2)观测值表示机器学习模型的样本数据(样本),是模型的输入,但不一定是真实世界中的数据(可以来自真实世界)。eg. 如果是图像的话,就是模型摄像头通过图像传感器的输入。(3)预测值表示学习模型预测出的数据。二、随机扰动项、误差和残差(1)随机扰动项指的是数据本身的不确定性带来的误差,通常我们假设随机扰动项独立且服从均值为0,方差相同的正态分布。(2)残差是指预测值与实际值的差,由于残差的计算要用到
2021-08-11 23:04:51 5905
原创 第十章---《实时语音处理实践指南》语音编/解码笔记
1、语音编/解码简述 编码的过程就是对语音进行压缩,压缩应该能够保留语音的主要信息甚至是全部信息,解码就是对语音进行解压缩,恢复原始语音信号。编解码可分为有损和无损两类,有损情况下,取语音中少量冗余信息,丢掉其他不重要的信息。 语音编码分为波形编码、参数编码和混合编码三种,基于波形的编码分为时域编码和频域编码两种,如PCM编码,参数编码用若干参数对发生过程建模,接收端根据这些参数将接收到的信号恢复为原始语音信号,如LPC、MELP编码,在低比特率下参数编码的效果比波形编码好。不同的语音编码器在比特率、复
2021-08-10 23:20:22 2934 2
原创 深度学习中的易混淆知识点总结(一)
1、Cost function/Loss function/Objective function借用知乎上面 @WuchangI 的回答:(1) 损失函数(loss function):针对单个样本,衡量单个样本的预测值y^(i)\hat{y}^{(i)}y^(i)与真实值y^(i)\hat{y}^{(i)}y^(i)之间的差距。(2)代价函数/成本函数(Cost function):针对多个样本,衡量多个样本的预测值∑i=1ny^(i)\sum_{i=1}^{n}\hat{y}^{(i)}∑i=
2021-08-07 22:24:24 603
原创 第八章---《实时语音处理实践指南》盲源分离笔记
本章利用信号的高阶统计量来分离出目标语音,盲语音分离就是假定源信号具有相互独立的统计特性,利用高阶统计量度量独立性,它能分离出所有非高斯性声源,实际使用中最常用的为独立成分分析法(ICA)。一般根据麦克风个数与声源个数的大小关系来区分不同的盲语音分离方法。在这里仅介绍麦克风个数大于或等于声源个数的情况,对于麦克风个数小于声源个数的情况,使用信号处理的方法效果不佳。一、ICA基本概念假定现有m个声源和m个麦克风,麦克风采集信号分别为x1(t),x2(t),⋯ ,xm(t)x_1(t),x_2(t),\.
2021-07-26 22:00:08 1232 2
原创 第四章---《实时语音处理实践指南》单通道降噪笔记
一、单通道降噪方法谱减法谱减法基于人类语音时/频域的稀疏性,在非语音段估计噪声,在带噪的语音段减去非语音段的估计的噪声得到纯净的语音。该方法只有幅度谱受影响,而相位谱并不受影响,这种方法要求噪声谱是静态的或者准静态的,当估计的背景噪声过小时,会有噪声残留,残余的噪声会形成音乐噪声,如果估计的背景噪声过大,则会导致语音被消掉。维纳滤波法该方法基于语音和噪声的统计独立性,使用MMSE准则降噪。基于最大似然(ML)、最大后验(MAP)、最小均方估计(MMSE)的统计模型法贝叶斯估计法
2021-07-18 19:55:21 1429 3
原创 第三章---《实时语音处理实践指南》语音端点检测笔记
一、 简要描述 语音端点检测(VAD)用于判断给定的音频数据是否存在语音,其常用在语音编解码、降噪、增益控制、波束形成以及唤醒识别等算法中。VAD检测给定音频数据含有语音的频率,VAD方法通常包括特征提取和语音、非语音判决两部分,当前使用的语音特征主要有时域和频域两种,时域特征包括能量波动、过零率、最大能量和最小能量等,频域特征主要有基频、频谱组成、频谱质心、谱差、谱密度、谱衰减等。用于VAD判决的特征通常可以分为六大类:能量、频域、倒谱、谱差、谐波和长时信息,基于能量的特征计算简单,如能量过零率,基于谱
2021-07-18 10:44:06 728
原创 第二章---《实时语音处理实践指南》发音机理与器件学习笔记
一、语音的产生和接收1、语音产生机理(1) 语音具有短时平稳性,这是很多语音算法前提之一。(2)语音发音可以分为清音和浊音两类,发浊音时大部分能量集中在低频段,且在时域上具有周期性,在频域上频谱分布具有共振峰结构。清音和白噪声类似,没有明显的时域和频域特征。(3) 浊音比如元音的语音产生机理如下:空气通过正常呼吸进入肺部,进入时一般无语音产生。空气通过气管排出肺时,依据贝努利定律(在一个流体系统,比如气流、水流中,流速越快,流体产生的压强就越小),被声门开口处空气压力拉紧的喉头处的声带会振动。
2021-07-13 22:16:23 452
原创 《失控》--- 新生物文明和蜂群思维
一、新生物文明1、到目前为止,那些原属于生命体却成功被移植到到机械系统中的特质有:(1)自我复制、自我管理、有限的自我修复、适度进化以及局部学习。2、文化基因(meme):也成为弥母,文化传播的最小单位,通过模仿等非遗传途经而得以代代相传。二、蜂群思维1、蜂群由谁来进行统治,由谁发布命令,由谁预见未来?(1)并非蜂后,而是蜂群。蜂后的女儿负责选择蜂群应该何时何地安顿下来,五六只无名工蜂在前方侦察,回来后,用圈子越来越小的舞蹈向休息的蜂群报告,侦查员的舞蹈越夸张,说明它主张使用的地点越好。接着,一
2021-07-09 20:30:08 505
原创 第一章---《实时语音处理实践指南》信号处理学习笔记
一、 离散傅里叶变换 离散傅里叶变换(DFT)是离散信号时/频域变换的方法。作用类似于棱镜,将由多种频率混合而成的语音按频谱散射,经过种种处理后,再反变换到时域,就可以获得“提纯”后的语音信号。实数DFT的输入是实数,得到的频点有两个集合,分别是正弦(cos)和余弦(sin)函数的系数,对应于正频分量和负频分量。1、DFT短时傅里叶变换可以获得较为准确的时序关系,比如说“ai”这个字的发音,“a”和“i”的发音在时间上是有顺序关系的,这时可以将序列等时分割成若干个小段,按顺序对每一个小段做DFT分
2021-07-07 17:20:42 1321 1
原创 第0章---《实时语音处理实践指南》绪论学习笔记
一、语音处理流程1、人的声带振动产生驻波信号,信号通过空气传播引起麦克风的振膜振动,经过ADC(模数转换器)采样后将机械振动信号转换成电荷量,进而转换成离散的数字信号。2、用噪声抑制等语音算法增强数字域的语音信号,这里的增强是“提纯”(去除噪声和干扰,增加语音可懂度和语音听感质量)采集到语音信号。可懂度,听者能听懂通过一定传声系统传递的言语信号的百分率。也称为 语言清晰度 (speech intelligibility)语音听感质量,PESQ (perceptual evaluation o
2021-06-29 21:52:41 954
原创 特征提取和特征选择方法
一、特征提取和特征选择1、特征选择和特征选择的区别=特征选择和降维(特征提取)有些许的相似点=,这两者达到的效果是一样的,就是试图去减少特征数据集中的属性的数目;但是两者所采用的方式方法却不同:降维的方法主要是通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间;而特征选择的方法是从原始特征数据集中选择出子集,是一种包含的关系,没有更改原始的特征空间。2、常用的特征选择方法特征发散:如果特征不发散,也就是说特征的方差趋近于0,则代表这个特征上不同样本之间没有差异性,对区分样
2021-03-29 11:04:22 10061
原创 基于Windows平台在matlab上配置可使用的xgboost工具箱
一、下载在matlab中安装工具箱名为“Functions to run xgboost in Matlab”。2、创建一个文件夹 D:\r\xgboost(e.g.)3、创建一个空的git repository4、从https://github.com/dmlc/xgboost 将代码pull下来,注意是pull在D:\r\xgboost文件下5、git bash here(D:r\xgboost是同等级文件目录下,而不是里面)-open a git bash.在里面输入:* git sub
2020-11-13 09:09:29 5959 7
原创 CS230 Deep Learning Course—Andrew Ng teaches you how to read papers
CS230 Deep Learning Course—Andrew Ng teaches you how to read papersOne1、compile list of papers2、skip around the list3、maybe you initially start off with five papers4、go from the very efficient high information content first and then go to the harder m
2020-09-21 15:25:33 258
原创 git远程托管项目到github学习笔记
最近在做一个项目,突然有个文件打不开了,忘了备份了,没得办法,只能重写,于是为了避免下次还出现这种问题,又重新拾起来了github。一、第一次上传本地项目到github1.准备工作github账号安装git工具自己的本地项目2.在github上面新建自己的项目new repository-->write your repository name -->write your description(optional)-->...-->choose init.
2020-08-22 10:58:51 175
转载 正则表达式30分钟入门教程
https://deerchao.cn/tutorials/regex/regex.htm#backreference
2020-07-04 11:08:52 251
原创 一战电子科技大学860软件工程失败二战西安电子科技大学计算机上岸的经验与教训
一战电子科技大学860软件工程失败二战西安电子科技大学计算机上岸的经验与教训本文主要记录一下这两年来的考研过程中遇到的问题以及一些经验和方法,也算为考研这件事画上一个圆满的句号吧,同时也希望这些经验与教训可以帮助学弟学妹们跳过一些坑。一、个人简介出身/背景 本科双非二本(省内一本),软件工程专业,有实习经历,有实验室学习经历,有项目,有奖项,但都不是什么NB的奖项和项目,英语已经过了四级和六级(都是飘过),本科成绩比较差,当然这与爱不爱学习无关~。初试成绩 一战—政治:62 英一:63
2020-05-27 21:19:33 1637 12
原创 2020复试英文自我介绍
Self-introduction Good morning/afternoon, my dear teachers. I am privileged to be here for your interview today .My name is xxxx, and I am 23 years old. I come from xxx, a beautiful city in ...
2020-05-24 10:37:17 1248
原创 【算法浅析】贪心算法学习笔记
(一)贪心算法基础1、贪心算法是什么贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,所得的是某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态。一般来说,如果在想到某个似乎可行的策略,并且自己无法举出反例,那么就勇敢地实现...
2020-05-01 22:11:37 1398
原创 你一定听得懂的"递归"教程!课程笔记
明明白白学递归递归过程什么样?什么情况用递归递归应该怎么编1.递归的定义又译为递回,在数学与计算科学中,是指在函数的定义中使用函数自身的方法。当进行下一次递归的时候,先前的函数会被挂起,栈的深度会加深。后进先出,栈的结构。不管递归到哪,最后会执行完毕,回到起点。2.两条原则①调用的目的是为了让其返回返回指的是返回一个结果或者返回一个控制权(执行成功,未必返回结果)...
2020-04-28 22:18:11 311
原创 AR app项目知识点深扒
(一)数据库1、设计相关数据库使用的是什么?MySQL 5.7以及搭配了Navicat for mysql5.7数据库管理工具。你数据库中使用了几个表?怎么设计的?总共有三个表,分别是扫描区域划分类目表(scan_info)、位置信息详情表(location_info)和人员信息表(person_info)。具体来说在scan_info表中有scan_id作为这个二维码的唯一标识...
2020-04-22 19:52:24 493 1
原创 Java开发工程师大厂面试常见问题总结(应届生版)
Java基础J2EE基础Android基础参考【1】Javaguide【2】Android-Note
2020-04-15 16:37:04 1022
原创 2021阿里高德Java实习生一面面经(2020.4.15)
希望三年以后(研究生毕业)可以进入阿里,这一次就是试试,估计可能应该要凉???(还是希望可以过,虽然我只是试试,主要是为了研究生复试做准备,基本没怎么准备这些东西,个人介绍还是上午才背的) 毕竟有好多我都是瞎扯的。还有期间断了无数次信号。。。。面了一个小时从下午2.30开始—3.30结束。1、开头自我介绍2、让说一个印象深刻的项目3、从项目中找知识点问4、问Java基础stati...
2020-04-15 16:27:30 953 9
原创 【剑指offer】二叉树的镜像C++实现
有的时候自己想了很久却还是想不出来思路,一看解析却很简单,看来还是应该好好刷题啊!!!(一)题目描述(二)代码#include <iostream>#include<stack>#include<cstring>#include<queue>#include<algorithm>using namespace std...
2020-04-13 23:07:03 216
原创 基于地理位置的Android AR app项目简述
(一)需求分析1、项目背景 基于当今的社会需求,没有人再会小看营销的重要性。而二维图像和视频等营销方式已经吸引不了客户的眼球。随着支付宝AR红包和任天堂的《精灵宝可梦》游戏的火速走红,AR已经成为了营销者中的新宠儿。公司主营业务便是VR相关,但是为了更好的开展业务和增加技术储备。于是,一种新型的基于地理位置的AR App便诞生了。2、本项目应用场景旅游景点房地产看房AR地图导航其他...
2020-04-08 21:41:55 2329
原创 基于微信小程序的ARPainting项目简述
两年前的项目了,今天翻出来看一下。主要还是从需求分析和设计实现两大块进行介绍。(一)需求分析1、项目背景描述 当时做这个项目的时候,公司正想入局微信小程序,而我此时微信小程序也已经学了半年了,正好派上了用场。由于微信小程序的“用完即走”的产品理念,加上当时AR/VR正火,老师(新中软研究中心)想着AR/VR的场景特别适合微信小程序的这个产品理念,想着将它们两个结合起来设计一款基于微信小...
2020-04-06 22:26:59 1108
原创 基于深度学习的音乐推荐系统简述
本文简要介绍我做的基于深度学习的音乐推荐系统。主要从需求分析与设计实现的角度来进行介绍。(一)需求分析 基于深度学习的音乐推荐系统旨在以个性化音乐推荐模型为基础,使用B/S架构的形式实现。个性化推荐模型使用了 随机梯度下降(SGD)、 K近邻分类算法(KNN)、协同过滤等传统机器学习领域算法进行音乐推荐的,同时使用了类似于Word2vec的词袋模型来对歌词进行文本处理,构建了异构文本网络...
2020-04-04 21:15:27 16960 51
原创 【算法浅析】2019年CCF算法习题部分整理
(一)CCF201909-1 小明种苹果试题描述代码#include <iostream>#include<cstring>#include<algorithm>#include<math.h> using namespace std; const int N=100;int main(int argc, char** arg...
2020-04-03 19:57:43 590
原创 二叉树的遍历与哈夫曼树的构造详解
(一)二叉树的遍历基础1、二叉树的先序遍历算法思想递归式:根结点->左子树->右子树递归边界 :二叉树是一棵空树代码void preorder(node* root){ if(root==NULL){ return;//到达空树,递归边界 } //访问根结点root,例如将其数据域输出 printf("%d\n",root->data); ...
2020-04-01 19:48:07 2285
原创 CCF考试中关于绘制图像问题的分析
(一)201412-2 Z字形扫描题目描述在图像编码的算法中,需要将一个给定的方形矩阵进行Z字形扫描(Zigzag Scan)。给定一个n×n的矩阵,Z字形扫描的过程如下图所示 对于下面的4×4的矩阵, 1 5 3 9 3 7 5 6 9 4 6 4 7 3 1 3 对其进行Z字形扫描后得到长度为16的序列: 1 5 3 9 7 3 9 5 4 7 3 6 6...
2020-04-01 18:48:14 249
DSTO-TN-0432.pdf
2020-04-07
Enhancing Robustness of the Inverted PBI Scalarizing Method in MOEA/D.pdf
2020-04-03
微信小程序map组件和相机组件的结合
2018-02-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人