2016蓝桥杯省赛C/C++B组7题剪邮票 DFS枚举组合情况BFS判联通



剪邮票


如【图1.jpg】, 有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。


请你计算,一共有多少种不同的剪取方法。


请填写表示方案数目的整数。

注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。


  










刚开始以为直接每个格子DFS五个,然后最后总数除以5就行了,结果44,后来发现有一种特殊情况DFS是搜不到的




比如这种,紫色区域DFS不管怎么搜都不会搜到5个联通


错误代码:


#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <vector>
#include <cstring>
#include <iostream>
#include <stack>
#include <algorithm>

using namespace std;

const int r = 3, c = 4;
bool vis[10][10];
int cou;

int dir[4][2] = { -1, 0, 0, 1, 1, 0, 0, -1 };

bool check(int x, int y) {
	if (x < 0 || x >= r || y < 0 || y >= c || vis[x][y]) {
		return false;
	}
	return true;
}

void dfs(int x, int y, int n) {
	if (n == 5) {
		cou++;
		return ;
	}
	for (int i = 0; i < 4; i++) {
		int nx = x + dir[i][0];
		int ny = y + dir[i][1];
		if (check(nx, ny)) {
			vis[nx][ny] = true;
			dfs(nx, ny, n + 1);
			vis[nx][ny] = false;
		}
	}
}

int main()
{
	memset(vis, false, sizeof(vis));
	cou = 0;
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++) {
			vis[i][j] = true;
			dfs(i, j, 1);
			vis[i][j] = false;
		}
	}
	cout << cou / 5 << endl;  //44
	return 0;
}


后来又想用DFS+并查集,但是在二维平面上用并查集,四个方向的祖先孩子关系标来标去标乱了,应该是我处理的问题


比如




相邻的两个点既可能是并查集中的祖先也可能是孩子,而我在标记的顺序上并没有什么限定,觉得这里出错的可能性很大


错误代码:


#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <set>

using namespace std;

const int r = 3, c = 4;
int cc;  //用来记录组合的总数,12取5 = 792

struct node {
	//x,y为当前点的横纵坐标,fa为所属集合标记
	int x, y, fa;
	node() {}
	node(int x, int y, int fa) : x(x), y(y), fa(fa) {}
};

node a[10];
int len;

bool mapp[10][10];
int cou;

int dir[4][2] = { 0, 1, 1, 0, -1, 0, 0, -1 }; //右,下,上,左

int getf(int x) {
	return a[x].fa == x ? x : getf(a[x].fa);
}

void merge(int x, int y) {
	int t1 = getf(x);
	int t2 = getf(y);
	if (t1 != t2) {
		a[t2].fa = t1;  //写成a[t1].fa = t2最后结果为零...
	}
}

bool Isout(int x, int y) {
	if (x < 0 || x >= r || y < 0 || y >= c) {
		return true;
	}
	return false;
}

bool Ismarked(int nx, int ny) {
	return mapp[nx][ny];
}

void dfs(int x, int y, int dep) {
	if (dep == 5) {

		//遍历四个方向
		for (int i = 0; i < len; i++) {
			for (int j = 0; j < 4; j++) {
				int nx = a[i].x + dir[j][0];
				int ny = a[i].y + dir[j][1];
				//没出界并且是某次组合选择的5个之一
				if (!Isout(nx, ny) && Ismarked(nx, ny)) {
					int k;
					//找到这个点在a中的下标
					for (k = 0; k < len; k++) {
						if (a[k].x == nx && a[k].y == ny) {
							break;
						}
					}
					//集合并入
					merge(i, k);
				}
			}
		}
		set<int> s;
		for (int i = 0; i < len; i++) {
			s.insert(a[i].fa);
		}

		//如果只有一个集合,说明联通
		if (s.size() == 1) cou++;

		cc++;
		return;
	}
	if (x == r) return;
	for (int i = y; i <= c; i++) {
		if (i < c) {
			mapp[x][i] = true;
			//将收集的五个点放到a中便于并查集运算
			a[len] = node(x, i, len); //a[x].fa = x;
			len++;

			dfs(x, i + 1, dep + 1);

			len--;
			mapp[x][i] = false;
		}
		else {
			dfs(x + 1, 0, dep);
		}
	}
}

int main()
{
	memset(mapp, false, sizeof(mapp));
	cou = 0;
	cc = 0;
	len = 0;
	dfs(0, 0, 0);
	cout << cou << endl;  //答案  115
	cout << cc << endl;   //组合情况总数 792
	return 0;
}


最后才想到用BFS,BFS在判断联通的的时候不会出现像DFS那种一条线走到底不会拐弯的情况,能够把整个面都覆盖上





#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <queue>
#include <set>

using namespace std;

const int r = 3, c = 4;
int cc;

struct node {
	int x, y;
	node() {}
	node(int x, int y) : x(x), y(y) {}
};

node a[10];
int len;

bool mapp[10][10];
bool bm[10][10];
int cou;

int dir[4][2] = { 0, 1, 1, 0, -1, 0, 0, -1 }; //右,下,上,左

bool Isout(int x, int y) {
	if (x < 0 || x >= r || y < 0 || y >= c) {
		return true;
	}
	return false;
}

//能够被纳入连通域返回true
bool CanCollect(int nx, int ny) {
	return bm[nx][ny];
}

int bfs() {
	int cn;  //连通域中块的个数
	memcpy(bm, mapp, sizeof(bm));
	queue<node> Q;

	Q.push(a[0]);
	bm[a[0].x][a[0].y] = false;
	cn = 1;

	while (!Q.empty()) {
		node tx = Q.front(); Q.pop();
		for (int i = 0; i < 4; i++) {
			int nx = tx.x + dir[i][0];
			int ny = tx.y + dir[i][1];
			if (!Isout(nx, ny) && CanCollect(nx, ny)) {
				bm[nx][ny] = false;
				cn++;
				Q.push(node(nx, ny));
			}
		}
	}
	return cn;
}

void dfs(int x, int y, int dep) {
	if (dep == 5) {
		if (bfs() == 5) {
			cou++;
		}
		cc++;
		return;
	}
	if (x == r) return;
	for (int i = y; i <= c; i++) {
		if (i < c) {
			mapp[x][i] = true;
			a[len] = node(x, i);
			len++;

			dfs(x, i + 1, dep + 1);

			len--;
			mapp[x][i] = false;
		}
		else {
			dfs(x + 1, 0, dep);
		}
	}
}

int main()
{
	memset(mapp, false, sizeof(mapp));
	cou = 0;
	cc = 0;
	len = 0;
	dfs(0, 0, 0);
	cout << cou << endl; //116
	cout << cc << endl;  //792
	return 0;
}


### 蓝桥杯 C/C++ 历年真及解析 #### 2024 年蓝桥杯 C/C++ 部分真解析 对于零食采购问,采用的是 LCA 算法来解决每次查询消耗 logN 的树上差分完整代码[^2]: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; vector<int> G[MAXN]; int dep[MAXN], fa[MAXN][20], dfn[MAXN], siz[MAXN], top[MAXN], son[MAXN], dis[MAXN]; bool vis[MAXN]; void dfs1(int u, int f, int d) { dep[u] = d; fa[u][0] = f; siz[u] = 1; for (auto v : G[u]) { if (v == f) continue; dis[v] = dis[u] + 1; dfs1(v, u, d + 1); siz[u] += siz[v]; if (siz[v] > siz[son[u]]) son[u] = v; } } void dfs2(int u, int t) { dfn[u] = ++dfn[0]; top[u] = t; if (!son[u]) return; dfs2(son[u], t); for (auto v : G[u]) if (v != fa[u][0] && v != son[u]) dfs2(v, v); } inline int lca(int x, int y) { while (top[x] != top[y]) { if (dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]][0]; } return dep[x] < dep[y] ? x : y; } ``` 训练士兵目涉及到较为复杂的逻辑处理,具体实现如下所示: ```cpp struct node { int id, a, b; } p[maxn]; bool cmp(node x, node y) { return x.a * y.b < y.a * x.b || (x.a * y.b == y.a * x.b && x.id < y.id); } int main() { cin >> n; for (int i = 1; i <= n; i++) scanf("%d%d", &p[i].a, &p[i].b), p[i].id = i; sort(p + 1, p + 1 + n, cmp); long long ans = 0; for (int i = 1; i <= n; i++) ans = ((ans % mod) + (((((long long)p[i].a * p[i].b) % mod)) * inv(i))) % mod; cout << ans << endl; return 0; } ``` 成绩统计则利用了二分算法来进行优化,从而降低了时间复杂度。以下是具体的代码实现: ```cpp #include<bits/stdc++.h> #define ll long long using namespace std; ll read(){ ll s=0,w=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();} while('0'<=ch&&ch<='9') s=s*10+ch-'0',ch=getchar(); return w*s; } const int N=1e6+7,M=N<<1; int h[N],to[M],ne[M],idx,n,m,S,T,d[N],q[N],cur[N]; double mid,f[N]; bool st[N]; void add(int a,int b){ ne[++idx]=h[a],to[h[a]=idx]=b; ne[++idx]=h[b],to[h[b]=idx]=a; } bool bfs(double lim){ for(int i=S;i<=T;++i)d[i]=-1,cur[i]=h[i]; d[q[l=r=1]=S]=0; while(l<=r){ int now=q[l++]; for(int i=h[now];~i;i=ne[i]){ if(d[to[i]]==-1&&f[to[i]]>=lim){ q[++r]=to[i]; cur[to[i]]=h[to[i]]; d[to[i]]=d[now]+1; if(to[i]==T)return true; } } } return false; } int dinic(int now,double lim,int flow){ if(now==T||flow==0)return flow; int rest=flow,k; for(int &i=cur[now];~i;i=ne[i]){ if(f[to[i]]>=lim&&d[to[i]]==d[now]+1&&(k=dinic(to[i],lim,min(rest,(int)f[to[i]]))){ f[from[i]]+=k,f[to[i]]-=k,rest-=k; if(!rest)break; } } if(flow==rest)d[now]=-1; return flow-rest; } signed main(){ memset(h,-1,sizeof h); n=read(),m=read(),S=n+m+1,T=n+m+2; for(int i=1;i<=n;++i) add(S,i),scanf("%lf",&f[i]); for(int i=1;i<=m;++i) add(n+i,T),scanf("%lf",&f[n+i]),f[n+i]*=-1; for(int i=1,x,y;i<=read();++i)x=read(),y=read()+n,add(x,y); double l=0,r=1,mid=(l+r)/2; while(r-l>eps){ mid=(l+r)/2; bool flag=false; for(int i=1;i<=n;++i)flag|=dinic(S,mid,inf)>0; flag?l=mid:r=mid; } printf("%.8lf\n",-l); } ``` #### 过往年度的真分析 针对过往年度的比,在某些情况下会使用暴力枚举的方法解决问。例如在寻找特定条件下的数列时可以采取以下方式[^3]: ```cpp void solve(){ init(); int ans,pri; for(int i = 2;i <= 400;i++){ for(int j = 1;j <= prime[0];j++){ ans = search(prime[j],i); if(ans!=-1){ pri = prime[j]; break; } } if(ans!=-1) break; } cout << ans << endl; } ``` 此外还有其他类型的目,比如计算数量等问也经常出现在比中[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值