代码摘录

  1. PropertyUtils.getSimpleProperty 用法
import org.apache.commons.beanutils.PropertyUtils;
public static void main(String[] args) {
		String prop = "fA";
		SjjDemoVO t = new SjjDemoVO();
		t.setfA("aaa");
		
		String val = "";
		try {
			val = PropertyUtils.getSimpleProperty(t, prop).toString();			
		} catch (IllegalAccessException | InvocationTargetException
				| NoSuchMethodException e) {
			e.printStackTrace();
		}
		System.out.println("val="+val);
		//console: val=aaa
	}
以下是使用Conv1D和UpSampling1D的自编码器代码示例: ```python from keras.layers import Input, Conv1D, UpSampling1D from keras.models import Model input_signal = Input(shape=(100, 1)) # Encoder x = Conv1D(16, kernel_size=3, activation='relu', padding='same')(input_signal) x = Conv1D(8, kernel_size=3, activation='relu', padding='same')(x) encoded = Conv1D(1, kernel_size=3, activation='relu', padding='same')(x) # Decoder x = Conv1D(8, kernel_size=3, activation='relu', padding='same')(encoded) x = Conv1D(16, kernel_size=3, activation='relu', padding='same')(x) decoded = Conv1D(1, kernel_size=3, activation='sigmoid', padding='same')(x) # Autoencoder autoencoder = Model(input_signal, decoded) # Compile the model autoencoder.compile(optimizer='adam', loss='binary_crossentropy') # Train the model autoencoder.fit(x_train, x_train, epochs=10, batch_size=32, validation_data=(x_test, x_test)) # Encoder model encoder = Model(input_signal, encoded) # Decoder model decoder_input = Input(shape=(50, 1)) decoder_layer1 = autoencoder.layers[-3](decoder_input) decoder_layer2 = autoencoder.layers[-2](decoder_layer1) decoder_layer3 = autoencoder.layers[-1](decoder_layer2) decoder = Model(decoder_input, decoder_layer3) ``` 在上面的代码中,我们首先定义了输入信号的形状,并使用Conv1D层定义了编码器和解码器。编码器由三个卷积层组成,每个卷积层都使用3个内核大小,并具有ReLU激活函数。解码器与编码器类似,但最后一个卷积层使用sigmoid激活函数。我们使用autoencoder模型来训练自编码器,然后使用encoder和decoder模型来获取编码和解码信号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值