与上一题买卖股票不同得到是,本题可以进行买卖交易多次。
看了论坛中的大佬的解法,不禁感叹,数字间这种奇妙的联系真的很powerful啊!!!
解题思路:对于一个数组,从第二天开始,都求一下与前一天的差价,如果大于0,则赚取这笔利润(也就是说,前一天买入,这一天卖出)。
为什么可以这么做呢?
举例说明:
step1:一组序列:1,2,3,6;不论怎么进行交易,最后都能赚取5元(或者可以类比一下,从点1走到点6,不论中途是否在结点2,3中停下来休息,都要走5公里的路程);
step2:现在假设将上述序列中的2变为5,则序列变为1,5,3,6;此时不能直接是1元买入,6元卖出,而应该是股票1元买入,5元卖出,3元买入,6元卖出,最多赚取7元。
可以看一下下面这张图,我们要计算的是总的线段之和最长,如果把它看成一条线,长度为5,如果把它看成两条线,再算上重合部分,则线段总和最长为7。
综上所述,对于上述两种情况其实可以合为一种。对于每一天算一下与前一天的差值,大于0,就加上这个差值,小于0,则不加。(感觉有点像贪婪算法)
源码附上:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int maxprof=0;
for(int i=1;i<prices.size();i++)
{
maxprof+=max(prices[i]-prices[i-1],0);
}
return maxprof;
}
};