1.函数说明
NVL :给值为NULL的数据赋值
格式:NVL(string1, replace_with)
功能:如果string1为NULL,则NVL函数返回replace_with的值,否则返回string1的值
2.实例
select nvl(name,-1) from emp;
name为空使用-1代替
select nvl(name,id) from emp;
name为空使用id的值代替
二、CASE WHEN
1.数据准备
name men sex
悟空 A 男
大海 A 男
宋宋 B 男
凤姐 A 女
婷姐 B 女
婷婷 B 女
2.实例
求出不同部门各多少人
select men,
sum(case sex when '男' then 1 else 0 end) male_count,
sum(case sex when '女' then 1 else 0 end) female_count
from sex group by men;
三、行转列
1.函数说明
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;
CONCAT_WS(separator, str1, str2,...):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。
如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间;
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。
2.数据准备
name constellation blood_type
孙悟空 白羊座 A
大海 射手座 A
宋宋 白羊座 B
猪八戒 白羊座 A
凤姐 射手座 A
3.实例
将星座和血型一样的人归类到一起
select tt.two,concat_ws("|",collect_set(tt.name)) name from
(select concat(constellation,blood_type) two,name from person_info) tt
group by tt.two;
四、列转行
1.函数说明
EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。
LATERAL VIEW:
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
2.数据准备
movie category
《疑犯追踪》 悬疑,动作,科幻,剧情
《Lie to me》 悬疑,警匪,动作,心理,剧情
《战狼2》 战争,动作,灾难
3.注意建表语句
create table movie_info(
movie string, category array<string>
)
row format delimited fields terminated by '\t'
collection items terminated by ',';
4.案例
将电影分类中的数组数据展开。结果如下:
《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
……………………
select movie,category_name from movie_info
lateral view explode(category) tt as category_name;
tt为中间表,category_name为炸开的那一列的列名
五、窗口函数
1.函数说明
OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化
CURRENT ROW:当前行
n PRECEDING:往前n行数据
n FOLLOWING:往后n行数据
UNBOUNDED:起点,UNBOUNDED PRECEDING 表示从前面的起点, UNBOUNDED FOLLOWING表示到后面的终点
LAG(col,n):往前第n行数据
LEAD(col,n):往后第n行数据
NTILE(n):把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。
注意:n必须为int类型。
2.数据准备
name,orderdate,cost
jack,2017-01-01,10
tony,2017-01-02,15
jack,2017-02-03,23
tony,2017-01-04,29
jack,2017-01-05,46
jack,2017-04-06,42
tony,2017-01-07,50
jack,2017-01-08,55
mart,2017-04-08,62
mart,2017-04-09,68
neil,2017-05-10,12
mart,2017-04-11,75
neil,2017-06-12,80
mart,2017-04-13,94
3.案例
(1)查询在2017年4月份购买过的顾客及总人数
select name,count(*) over()
from business
where substring(orderdate,1,7) = '2017-04'
group by name;
(2)查询顾客的购买明细及月购买总额(partition -> distribute)
select name,orderdate,cost,
sum(cost) over(partition by month(orderdate))
from business;
(3)上述的场景,要将cost按照日期进行累加
select *,sum(cost) over(sort by orderdate rows between UNBOUNDED PRECEDING and CURRENT ROW) from business;
select name,orderdate,cost,
sum(cost) over() as sample1, --所有行相加
sum(cost) over(partition by name) as sample2, --按name分组,组内数据相加
sum(cost) over(partition by name order by orderdate) as sample3, --按name分组,组内数据累加
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample4, --和sample3一样,由起点到当前行的聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample5, --当前行和前面一行做聚合
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND 1 FOLLOWING ) as sample6, --当前行和前边一行及后面一行
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING ) as sample7 --当前行及后面所有行
from business;
(4)查看顾客上次的购买时间
select name,orderdate,cost,
lag(orderdate,1) over(partition by name order by orderdate ) as time1,
lead(orderdate,2) over (partition by name order by orderdate) as time2
from business;
(5)查询前20%时间的订单信息
select * from (
select name,orderdate,cost, ntile(5)
over(order by orderdate) gid
from business
) tt where gid = 1;
六、Rank
1.函数说明
RANK() 排序相同时会重复,总数不会变
DENSE_RANK() 排序相同时会重复,总数会减少
ROW_NUMBER() 会根据顺序计算
2.数据准备
name subject score
孙悟空 语文 87
孙悟空 数学 95
孙悟空 英语 68
大海 语文 94
大海 数学 56
大海 英语 84
宋宋 语文 64
宋宋 数学 86
宋宋 英语 84
婷婷 语文 65
婷婷 数学 85
婷婷 英语 78
3.案例
计算每门学科成绩排名
select name,subject,score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;