《黑马程序员2023新版黑马程序员大数据入门到实战教程,大数据开发必会的Hadoop、Hive,云平台实战项目》第二章

本文探讨了为何需要分布式存储,强调了海量数据处理时的性能优势。深入剖析了分布式基础架构,包括去中心化与中心化模式,以及HDFS在Hadoop中的主从模式架构,介绍了NameNode、DataNode和SecondaryNameNode的角色。
摘要由CSDN通过智能技术生成

目录

01 为什么需要分布式存储

1. 了解为什么海量数据需要使用分布式存储技术

2. 分布式的性能提升

3. 总结

02 分布式的基础架构分析

1. 了解实现一个分布式系统如何做基础架构

2.总结

03 HDFS的基础架构

1. 了解什么是HDFS及其和Hadoop的关系


01 为什么需要分布式存储

1. 了解为什么海量数据需要使用分布式存储技术

                

        大文件在单独的服务上存储不了,可以把文件划分为多个部分。

                        

        靠数量取胜,多台服务器组合才能hold住。

2. 分布式的性能提升

分布式不仅仅是解决了能存的问题, 多台服务器协同工作 带来的也是性能的横向扩展。

                        

        存储和取出数据都能提升。

3. 总结

为什么需要分布式存储?

        数据量太大,单机存储能力有上限,需要靠数量来解决问题 数量的提升带来的是网络传输、磁盘读写、CPU、内存等各方面的综合提升。 分布式组合在一起可以达到1+1>2的效果

02 分布式的基础架构分析

1. 了解实现一个分布式系统如何做基础架构

        数量多,在现实生活中往往带来的不是提升,而是:混乱。同学们思考一下, 众多的服务器一起工作,是如何高效、不出问题呢?

        大数据体系中,分布式的调度主要有2类架构模式: 去中心化模式、中心化模式

        去中心化模式:没有明确的中心。 众多服务器之间基于特定规则进行同步协调。      

                                  

        中心化模式:

        大数据框架,大多数的基础架构上,都是符合:中心化模式的。即:有一个中心节点(服务器)来统筹其它服务器的工作,统一指挥,统一调派,避免混乱。 这种模式,也被称之为:一主多从模式,简称主从模式(Master And Slaves)

        主从模式(中心化模式)在现实生活中同样很常见: 公司企业管理、组织管理、行政管理等等。我们学习的Hadoop框架,就是一个典型的主从模式(中心化模式)架构的技术框架。

2.总结

1). 分布式系统常见的组织形式?

        去中心化模式:没有明确中心,大家协调工作

        中心化模式:有明确的中心,基于中心节点分配工作

2). 什么是主从模式?

        主从模式(Master-Slaves)就是中心化模式,表示有一个主节点来作为管理者,管理协调下属一批从节点工作。

3). Hadoop是哪种模式?

        主从模式(中心化模式)的架构

03 HDFS的基础架构

1. 了解什么是HDFS及其和Hadoop的关系

HDFS是Hadoop三大组件(HDFS、MapReduce、YARN)之一

  •         全称是:Hadoop Distributed File System(Hadoop分布式文件系统)
  •         是Hadoop技术栈内提供的分布式数据存储解决方案
  •         可以在多台服务器上构建存储集群,存储海量的数据

HDFS是一个典型的主从模式架构

2. HDFS的基础架构

        主角色发布命令,从角色根据命令干活。

NameNode:

  • HDFS系统的主角色,是一个独立的进程
  • 负责管理HDFS整个文件系统
  • 负责管理DataNode

SecondaryNameNode:

  • NameNode的辅助,是一个独立进程
  • 主要帮助NameNode完成元数据整理工作(打杂)

DataNode:

  • HDFS系统的从角色,是一个独立进程
  • 主要负责数据的存储,即存入数据和取出数据

3. 总结

1). 什么是HDFS?

  • HDFS全称:Hadoop Distributed File System
  • 是Hadoop三大组件(HDFS、MapReduce、YARN)之一
  • 可在多台服务器上构建集群,提供分布式数据存储能力

2). HDFS中的架构角色有哪些?

  • NameNode:主角色,管理HDFS集群和DataNode角色
  • DataNode:从角色,负责数据的存储
  • SecondaryNameNode:辅助角色,协助NameNode整理元数据

3). HDFS的基础架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Exp[X]

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值