一、堆结构:(堆是完全二叉树)
· i位置(在size内)的:左孩子:2*i+1
右孩子:2*i+2
父: (i-1)/2 (向下取整)
大根堆:
heapInsert:(
)
public static void heapInsert(int[] arr, int index)
{
while(arr[index] > arr[(index - 1)/ 2])
{
swap(arr, index, (index - 1)/2);
index = (index - 1) /2;
}
}
heapify:(最大/大根堆的下沉)(
)
public static void heapify(int[] arr, int index, int heapsize)
{
int left = index * 2 + 1;
while(left < heapsize) {
int largest = left + 1 < heapsize && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index)
{
break;
}
swap(arr, index, largest);
index = largest;
left = index * 2 + 1;
}
}
问:若用户修改heapsize内的任意一个数为“?”,要求重新实现大根堆。
当?变大时,用heapinsert;当?变小时,用heapify。
二、堆排序(heapsort)
得到一个数组后,把它变为大根堆(做heapinsert
),再取最大的数(即最高节点)和数组最后一个数做swap,并且heapsize--,做heapify,一直重复上述步骤,就实现了堆排序。
public static void heapsort(int[] arr)//时间复杂度为o(nlogn) 空间复杂度o(1)
{
if(arr == null || arr.length < 2)
{
return;
}
for(int i = 0;i < arr.length;i++)
{
heapinsert(arr,i);
}
int heapsize = arr.length;
swap(arr, 0, --heapsize);
while(heapsize > 0)
{
heapify(arr, 0, heapsize);
swap(arr, 0, --heapsize);
}
}
对于把数组变成大根堆形式的代码,当一次性把所有数都给出来时,做如下简化,可以把时间复杂度稍微变快一点点。
for(int i = arr.length - 1;i >= 0;i--)
{
heapify(arr, i, arr.length);
}
总代码如下:
public class javatest {
public static void main(String[] args) {
int[] heap = {8,5,4,1,2,3,7,6,9};
heapsort(heap);
for(int i = 0; i < heap.length; i++)
{
System.out.print(heap[i] + " ");
}
}
public static void heapsort(int[] arr)//时间复杂度为o(nlogn) 空间复杂度o(1)
{
if(arr == null || arr.length < 2)
{
return;
}
for(int i = 0;i < arr.length;i++)
{
heapinsert(arr,i);
}
int heapsize = arr.length;
swap(arr, 0, --heapsize);
while(heapsize > 0)
{
heapify(arr, 0, heapsize);
swap(arr, 0, --heapsize);
}
}
public static void heapinsert(int[] arr, int index)
{
while(arr[index] > arr[(index - 1)/ 2])
{
swap(arr, index, (index - 1)/2);
index = (index - 1) /2;
}
}
public static void swap(int[] arr, int i, int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
public static void heapify(int[] arr, int index, int heapsize)
{
int left = index * 2 + 1;
while(left < heapsize) {
int largest = left + 1 < heapsize && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index)
{
break;
}
swap(arr, index, largest);
index = largest;
left = index * 2 + 1;
}
}
}
用到了优先队列,底层还是堆,默认是最小堆
public static void sortedArrayDistanceLessK(int[] arr,int k)
{
PriorityQueue<Integer> heap = new PriorityQueue<>();
int index = 0;
for(;index <= Math.min(arr.length, k);index++)
{
heap.add(arr[index]);
}
int i = 0;
for(;index < arr.length;i++, index++)
{
heap.add(arr[index]);
arr[i] = heap.poll();
}
while(!heap.isEmpty())
{
arr[i++] = heap.poll();
}
}
三、比较器
所谓“潜台词”:返回负数:第一个参数在前面
返回正数:第二个参数在前面
返回零:谁在前面无所谓
以视频中的学生为例
public static class Student
{
public String name;
public int id;
public int age;
public Student(String name, int id, int age)
{
this.name = name;
this.id = id;
this.age = age;
}
}
public static class IdAscentingComparator implements Comparator<Student> {
public int compare(Student o1, Student o2) {
return o1.age - o2.age;//升序排序 若要实现降序,只需交换o1 o2的顺序
}
}
Arrays.sort(students, new IdAscentingComparator() {});
//调用时用此格式
更复杂时:先按年龄排序,再按id排序
public static class AgeAscentingComparator implements Comparator<Student> {
public int compare(Student o1, Student o2) {
if(o1.age != o2.age)
{
return o1.age - o2.age;
}
return o1.id - o2.id;//比较器的好处是可应对复杂情况
}
}
四、桶排序
计数排序排序是不基于比较的排序,需要根据数据状况来定制,面很窄,数据量大的时候不适用。
桶排序(radixSort):
条件:需要数据有进制
下面是完整代码:使用时调用radixSort即可
public static int maxbits(int[] arr)
{
int max = Integer.MIN_VALUE;
for(int i = 0;i < arr.length;i++)
{
max = Math.max(max, arr[i]);
}
int res = 0;
while(max > 0)
{
res++;
max /= 10;
}
return res;
}
public static void radixSort(int[] arr, int L, int R, int digit)
{
final int radix = 10;
int i = 0, j = 0;
int[] bucket = new int [R - L + 1];
for(int d = 1;d <= digit;d++)
{
int[] count = new int [R - L + 1];
for(i = L;i <= R;i++)
{
j = getDigit(arr[i], d);
count[j]++;
}
for(i = 1;i < radix;i++)
{
count[i] = count[i] + count[i - 1];
}
for(i = R;i >= L;i--)
{
j = getDigit(arr[i], d);
bucket[count[j] - 1] = arr[i];
count[j]--;
}
for(i = L, j = 0;i <= R;i++, j++)
{
arr[i] = bucket[j];
}
}
}
public static int getDigit(int x,int d)
{
return ((x / (int) Math.pow(10, d - 1) ) % 10);
}
稍有一点绕需要多次看视频理解一下,“分片”的形式。