论文:Medical Visual Question Answering: A Survey
作者:Zhihong Lin,Donghao Zhang,Qingyi Tac,Danli Shi,Gholamreza Haffari,Qi Wu,Mingguang He,Zongyuan Ge
机构:beResearch Center, Monash University, Clayton, VIC, Australia, NVIDIA AI Technology Center, Singapore, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
摘要:医学视觉问答(VQA)是医学人工智能和流行的VQA挑战的结合。给定一幅医学图像和一个自然语言的临床相关问题,医学VQA系统预计将预测一个可信和令人信服的答案。虽然已经对一般领域的VQA进行了广泛的研究,但医学VQA由于其任务的特点,仍然需要具体的调查和探索。在本次调查的第一部分中,我们涵盖并讨论了最新公开的医疗VQA数据集,包括数据源、数据量和任务特征。在第二部分中,我们回顾了医学VQA任务中使用的方法。在最后一部分,我们分析了该领域面临的一些医学挑战,并讨论了未来的研究方向。
数据集概述:
方法概览: