PAT A1004 Counting Leaves (30 分)

这篇博客介绍了如何解决一道编程题目,题目要求在给定的家谱树中计算每个层次的叶子节点数量。博主使用深度优先搜索(DFS)策略实现,通过建立静态节点并遍历非叶节点来确定树的结构,然后递归地计算每个节点的子节点。代码中定义了二维向量`child`存储子节点信息,数组`leaf`记录每层的叶子节点数,`level`记录节点层数,`max_level`记录最大层数。最后输出从根节点开始的每层叶子节点数。

1004 Counting Leaves (30 分)

A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0<N<1000<N<1000<N<100, the number of nodes in a tree, and MMM (<N<N<N), the number of non-leaf nodes. Then MMM lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

The input ends with NNN being 0. That case must NOT be processed.

Output Specification:

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

Sample Input:

2 1
01 1 02

Sample Output:

0 1

题解

题意

给出一棵树,计算每一层的叶子节点的个数。

思路

用 dfs ,也可以用树的层序遍历,但 dfs 比较好写。对于这种给出结点 id 的树,用静态结点比较方便。

代码

#include <iostream>
#include <vector>

using namespace std;

vector<int> child[105];
// 第 i 层的叶子结点的个数,结点 i 的层数,最大层数
int leaf[105], level[105] = {0, 1}, max_level;

void dfs(int id) {
  int l = level[id];
  if (l > max_level) max_level = l;
  if (child[id].size() == 0)  // 这个结点是叶子结点,则这层的叶子结点数 + 1
    ++leaf[l];
  else  // 这个结点不是叶子节点,则遍历他的孩子
    for (auto &c : child[id]) {
      level[c] = l + 1;
      dfs(c);
    }
}

int main() {
  int n, m, id, k, c;

  cin >> n;

  if (n == 0) return 0;

  cin >> m;

  for (int i = 0; i < m; ++i) {
    cin >> id >> k;
    for (int j = 0; j < k; ++j) {
      cin >> c;
      child[id].push_back(c);
    }
  }

  dfs(1);
  
  for (int i = 1; i <= max_level; ++i)
    cout << leaf[i] << (i == max_level ? "" : " ");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值