7-41 最近距离

7-41 最近距离

在一个游戏中,玩家处于一个如下所示12行12列的迷宫:

0,1,0,0,0,1,1,1,0,1,0,1

0,0,0,1,0,0,0,0,1,0,0,1

0,1,0,1,0,1,1,1,0,1,0,0

0,1,0,0,0,0,0,1,0,0,1,1

0,0,0,0,1,0,0,0,0,0,0,0

0,0,1,0,0,0,1,0,0,0,1,0

0,0,1,0,0,0,0,0,1,0,0,0

1,0,0,1,0,1,0,0,0,1,0,1

0,0,1,0,1,0,1,0,1,0,0,0

0,0,0,0,0,1,0,0,0,1,1,0

0,0,0,0,0,1,0,0,0,0,0,0

0,1,0,1,0,0,0,1,0,1,0,0

其中迷宫由0,1组成,0表示道路,1表示障碍物。

现在要根据玩家和游戏中被攻击的虚拟boss所在位置,给玩家以最近距离的提示。

最近距离:即玩家走到boss所走的最少步数。(注:路线中的一步是指从一个坐标点走到其上下左右相邻坐标点。)

输入格式:
输入4个整数a,b,c,d(即玩家和虚拟boss在迷宫中的坐标位置分别为(a,b) 、(c,d)),
其中 0<=a,b,c,d<12。

输出格式:
输出在迷宫中从(a,b)出发到达(c,d)的最少步数,如果(a,b)永远无法到达(c,d)则输出10000。

#include <bits/stdc++.h>
using namespace std;
int map1[12][12] = {
        {0,1,0,0,0,1,1,1,0,1,0,1},
        {0,0,0,1,0,0,0,0,1,0,0,1},
        {0,1,0,1,0,1,1,1,0,1,0,0},
        {0,1,0,0,0,0,0,1,0,0,1,1},
        {0,0,0,0,1,0,0,0,0,0,0,0},
        {0,0,1,0,0,0,1,0,0,0,1,0},
        {0,0,1,0,0,0,0,0,1,0,0,0},
        {1,0,0,1,0,1,0,0,0,1,0,1},
        {0,0,1,0,1,0,1,0,1,0,0,0},
        {0,0,0,0,0,1,0,0,0,1,1,0},
        {0,0,0,0,0,1,0,0,0,0,0,0},
        {0,1,0,1,0,0,0,1,0,1,0,0}
};//初始地图

int a,b,c,d,mint=10000;
int countt;
int dx[]={0,0,-1,1};
int dy[]={1,-1,0,0};
void f(int m,int n){
    if(c==m&&d==n){
        if(countt<mint){
            mint=countt;
        }
    }
    for(int i=0;i<4;i++){
        if(m+dx[i]>=0&&m+dx[i]<12&&n+dy[i]<12&&n+dy[i]>=0 && !map1[m+dx[i]][n+dy[i]]&&countt<mint){//这里使用了剪枝
            map1[m+dx[i]][n+dy[i]]=1;
            countt++;
            f(m+dx[i],n+dy[i]);
            map1[m+dx[i]][n+dy[i]]=0;//记得回溯
            countt--;

        }
    }
}
int main(){
    cin>>a>>b>>c>>d;
    f(a,b);
    cout<<mint;
    return 0;
}
<think>好的,用户想解决20个城市的旅行商问题(TSP),要求找到最优路径并最小化旅费。首先,我需要考虑TSP问题的性质和可能的解决方法。TSP属于NP难问题,城市数量增加到20时,精确算法的计算量会非常大,因为可能的路径数量是(20-1)!/2,大约是6.08×10^16,这显然无法在合理时间内穷举所有解。 根据引用[3],回溯法和分支限界法是解决这类问题的常用精确算法。回溯法通过系统地搜索解空间树,而分支限界法则利用优先队列来剪枝,减少搜索空间。用户提到有城市坐标数据,可能需要计算欧几里得距离,这会影响邻接矩阵的构建。 不过,20个城市的精确求解可能仍然很耗时。引用[4]提到,当问题规模较大时,精确解难以获得,可能需要近似算法。但用户明确要求最优路径,所以必须使用精确方法。引用[2]中的递归回溯法适用于排列树,适合TSP问题,因为路径是排列。 接下来,我需要考虑如何实现分支限界法。优先队列分支限界法可以有效地管理待处理的节点,每次选择下界最小的节点进行扩展,这样可以更快地找到最优解。同时,需要计算每个节点的下界,比如通过最小生成树或最近邻方法估计剩余路径的最小可能值,从而决定是否剪枝。 另外,代码实现方面,需要处理城市坐标,计算距离矩阵,然后应用分支限界法。可能需要优先队列(如堆结构)来存储待扩展的节点,每个节点包含当前路径、已访问的城市、当前代价和下界。剪枝策略是关键,以避免不必要的计算。 用户可能需要具体的步骤解释和代码示例,所以应该分步骤讲解算法流程,并提供一个Python实现的框架。同时,需要注意20个城市在分支限界法中的可行性,可能需要优化策略,比如动态规划中的状态压缩(如 Held-Karp 算法),但分支限界法可能更灵活。 最后,相关问题部分需要涵盖TSP的不同解决方法、优化技巧、实际应用和与其他问题的关联,以帮助用户全面理解。</think>### 分步解答:20城市TSP问题的最优路径求解 #### 1. 问题建模 给定20个城市的坐标$(x_i,y_i)$,构建距离矩阵$D_{n×n}$,其中$d_{ij}=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}$。目标找到访问所有城市且返回起点的最小费用排列。 #### 2. 算法选择 采用**优先队列分支限界法**[^3],其优势在于: - 通过下界估计实现剪枝 - 优先扩展有希望的分支 - 保证找到全局最优解 #### 3. 算法实现步骤 ```python import heapq import math class Node: def __init__(self, path, cost, matrix, bound=0): self.path = path # 当前路径 self.cost = cost # 已累积费用 self.bound = bound # 下界估计值 self.matrix = matrix# 剩余距离矩阵 def __lt__(self, other): return self.bound < other.bound def TSP_BranchAndBound(coords): n = len(coords) # 构建距离矩阵 dist = [[0]*n for _ in range(n)] for i in range(n): for j in range(i+1, n): dist[i][j] = dist[j][i] = math.hypot(coords[i][0]-coords[j][0], coords[i][1]-coords[j][1]) # 初始化优先队列 heap = [] initial_bound = compute_initial_bound(dist, n) heapq.heappush(heap, Node([0], 0, dist, initial_bound)) min_cost = float('inf') best_path = [] while heap: current = heapq.heappop(heap) if current.bound >= min_cost: continue # 剪枝 if len(current.path) == n: # 计算回路费用 total = current.cost + current.matrix[current.path[-1]][0] if total < min_cost: min_cost = total best_path = current.path + [0] else: # 生成子节点 last = current.path[-1] for j in range(n): if j not in current.path and current.matrix[last][j] > 0: new_path = current.path + [j] new_cost = current.cost + current.matrix[last][j] new_bound = compute_bound(new_path, new_cost, current.matrix, n) if new_bound < min_cost: heapq.heappush(heap, Node(new_path, new_cost, current.matrix, new_bound)) return best_path, min_cost def compute_initial_bound(dist, n): # 使用最小生成树计算初始下界 bound = 0 visited = [False]*n visited[0] = True for _ in range(n-1): min_edge = float('inf') for i in range(n): if visited[i]: for j in range(n): if not visited[j] and dist[i][j] < min_edge: min_edge = dist[i][j] bound += min_edge return bound ``` #### 4. 算法优化关键点 1. **下界计算优化**:采用最小生成树+当前路径费用估算剩余路径最小费用 2. **对称性剪枝**:固定起始点减少计算量 3. **动态矩阵更新**:记录已访问节点后的剩余距离矩阵 4. **优先队列管理**:总是优先处理下界最小的分支 #### 5. 性能分析 - 最坏时间复杂度仍为$O(n!)$,但实际通过剪枝可显著提升效率 - 内存消耗主要来自优先队列存储,空间复杂度$O(b^d)$(b为分支因子,d为深度) - 20城市问题在普通计算机上可能需要数小时至数天完成计算 #### 6. 替代方案建议 若无法承受计算时间,可考虑: 1. **动态规划(Held-Karp算法)**:时间复杂度$O(n^2 2^n)$,20城市需约$2^{20}×400≈4亿次$操作 2. **近似算法**:如Christofides算法(保证解在最优解的1.5倍内) 3. **元启发式算法**:遗传算法、模拟退火等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值