图和图的查询(通过DFS和BFS)

本文介绍了如何在图论中使用深度优先搜索(DFS)解决地道战危险系数问题,并通过正向和逆向DFS优化求解有向图最大可达点和阳光大学封锁问题。还讲解了涂色法在最少河蟹封锁道路中的应用,结合实例演示了算法和代码实现。
摘要由CSDN通过智能技术生成

本周学习了图

图可以分为单向图和无向图

在这里插入图片描述 

 图的存储:

我目前学会的:

1.二维数组

缺点:容易爆掉

所以一般使用

2,vertor(如果不读入就是NULL空,不占用空间不会爆掉)

入读双向图

for(int k=1;k<=m;k++)
{
	cin>>x>>y;
	didao[x].push_back(y);
	didao[y].push_back(x);
	
	}

读入单项图 

​
for(int k=1;k<=m;k++)
{
	cin>>x>>y;
	didao[x].push_back(y);
	
	
	}

​

而图的查询一般使用DFS和BFS

因此在查询图的时候要考虑这两种方法 

例题:

题目背景

抗日战争时期,冀中平原的地道战曾发挥重要作用。

题目描述

地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。

我们来定义一个危险系数 DF(x,y)DF(x,y):

对于两个站点 xx 和 y(x\neq y),y(x=y), 如果能找到一个站点 zz,当 zz 被敌人破坏后,xx 和 yy 不连通,那么我们称 zz 为关于 x,yx,y 的关键点。相应的,对于任意一对站点 xx 和 yy,危险系数 DF(x,y)DF(x,y) 就表示为这两点之间的关键点个数。

本题的任务是:已知网络结构,求两站点之间的危险系数。

输入格式

输入数据第一行包含 22 个整数 n(2 \le n \le 1000)n(2≤n≤1000),m(0 \le m \le 2000)m(0≤m≤2000),分别代表站点数,通道数。

接下来 mm 行,每行两个整数 u,v(1 \le u,v \le n,u\neq v)u,v(1≤u,v≤n,u=v) 代表一条通道。

最后 11 行,两个数 u,vu,v,代表询问两点之间的危险系数 DF(u,v)DF(u,v)。

输出格式

一个整数,如果询问的两点不连通则输出 -1−1。

输入输出样例

输入 #1复制

7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6

输出 #1复制

2

说明/提示

时限 1 秒, 64M。蓝桥杯 2013 年第四届国赛

本题采用DFS进行深度优先查询

在图中查找从起点到终点 的条数

在走到点时

利用book的记录,找到本条路径都走过了哪些点

最后通过遍历每个点总记录数

若总记录数==路径数

说明每次都走过这个点,

这个点就是关键危险点

易错:起点和终点要排除,二者也满足上述需求

AC代码:

#include<bits/stdc++.h>
using namespace std;
int x,y,n,m,xp,ep,total;
int book[1005]={0};
vector <int> didao[1005];
int step[1005]={0};
void dfs(int p)
{
	if(p==ep)
	{
		
		for(int k=1;k<=n;k++)
		{
			if(book[k]==1)
			step[k]++;
		}
		total++;
		return; 
	}
	for(int i=0;i<didao[p].size();i++)
	{
		int next=didao[p][i];
		if(book[next]==0)
		{book[next]=1;
			dfs(next);
			book[next]=0;
		}
	}
	return;
}

int main()
{
	
	cin>>n>>m;
	
for(int k=1;k<=m;k++)
{
	cin>>x>>y;
	didao[x].push_back(y);
	didao[y].push_back(x);
	
	}
	cin>>xp>>ep;
	book[xp]=1;
	int ans=-2;
	dfs(xp);
		for(int k=1;k<=n;k++)
		{
			if(step[k]==total)
			ans++;
		}
 cout<<ans;
}

第二题:

题目描述

给出 NN 个点,MM 条边的有向图,对于每个点 vv,求 A(v)A(v) 表示从点 vv 出发,能到达的编号最大的点。

输入格式

第 11 行 22 个整数 N,MN,M,表示点数和边数。

接下来 MM 行,每行 22 个整数 U_i,V_iUi​,Vi​,表示边 (U_i,V_i)(Ui​,Vi​)。点用 1,2,\dots,N1,2,…,N 编号。

输出格式

一行 NN 个整数 A(1),A(2),\dots,A(N)A(1),A(2),…,A(N)。

输入输出样例

输入 #1复制

4 3
1 2
2 4
4 3

输出 #1复制

4 4 3 4

说明/提示

  • 对于 60\%60% 的数据,1 \leq N,M \leq 10^31≤N,M≤103。
  • 对于 100\%100% 的数据,1 \leq N,M \leq 10^51≤N,M≤105。

 

本题我使用了正向DFS 结果一半的测试点都超出了时间限制

查看0题解才发现可以逆向DBS

并且这样可以不用回头看

即book记录不用重新置0.

所以我们从n到1枚举起点

如果一个点被标记过,也就是说这个点有答案

和该点相连的所有点都被标记过,因此无需搜索这个点。

在遇到有答案的点是跳过即可

ac代码:

#include<bits/stdc++.h>
using namespace std;
int x,y,n,m,xp,ep,total;
int maxx[100005]={0};
int book[100005]={0};
vector <int> didao[100005];

void dfs(int p,int ori)
{    if(book[p]==1)
      return;
maxx[p]=ori;
book[p]=1;
	
	for(int i=0;i<didao[p].size();i++)
	{   
		int next=didao[p][i];
	
		
			dfs(next,ori);
		
		
		
	}
	return;
}

int main()
{
	
	cin>>n>>m;
	
for(int k=1;k<=m;k++)
{
	cin>>x>>y;
	didao[y].push_back(x);
	
	
	}
	for(int k=n;k>=1;k--)
	{


	dfs(k,k);}
	cout<<maxx[1];
		for(int k=2;k<=n;k++)
	cout<<" "<<maxx[k];
	
	
}

第三题封锁阳光大学

题目描述

曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。

阳光大学的校园是一张由 nn 个点构成的无向图,nn 个点之间由 mm 条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。

询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。

输入格式

第一行两个正整数,表示节点数和边数。 接下来 mm 行,每行两个整数 u,vu,v,表示点 uu 到点 vv 之间有道路相连。

输出格式

仅一行如果河蟹无法封锁所有道路,则输出 Impossible,否则输出一个整数,表示最少需要多少只河蟹。

输入输出样例

输入 #1复制

3 3
1 2
1 3
2 3

输出 #1复制

Impossible

输入 #2复制

3 2
1 2
2 3

输出 #2复制

1

说明/提示

【数据规模】
对于 100\%100 % 的数据,1\le n \le 10^41≤n≤104,1\le m \le 10^51≤m≤105,保证没有重边。

思路:难点是  思路寻找

使用涂色法(①每一条边所连接的点中,至少要有一个被选中。②每一条边所连接的两个点,不能被同时选中。)

先将所有点设成-1

通过  ^   实现0和1的转化

int t=0;
t=t^1---->t=1
再次
t=t^!----->t=0

 这样改变颜色

impossible条件

发下下次要涂色的点和相邻的节点颜色一样

则输出impossible。

细节:因为河蟹数实际上就是一种颜色的节点数

因此要通过min函数找到两种节点哪种颜色最少

最少节点即为answer

AC代码、

#include<bits/stdc++.h>
using namespace std;
int x,y,n,q,an;
int m[100005]={-1};
int book[100005]={0};
vector <int> didao[100005];

void dfs(int p,int t)
{    
if(m[p]!=-1&&m[p]!=t)
{
	cout<<"Impossible";
	exit(0);
}
else if(m[p]==t)
return;
m[p]=t;
book[p]=1;
an++;
for(int k=0;k<didao[p].size();k++)
dfs(didao[p][k],t^1);
}

int main()
{
	
	cin>>n>>q;
	
for(int k=1;k<=q;k++)
{
	cin>>x>>y;
	didao[y].push_back(x);
	didao[x].push_back(y);
	
	}
	
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		if(book[i]==0)
		{an=0;
		memset(m,-1,sizeof(m));
		dfs(i,0);
		int t=0;
		
        for(int i=1;i<=n;i++)
		 {
		 if(m[i]==1) t++;}
        ans=ans+min(t,an-t);
		}
		
	}
	
cout<<ans;
	
	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值