week8

本周学习了01背包问题,完全背包问题和混合背包问题

其实质实际还是打表,动态规划

第一题:;

题目背景

此题为纪念 LiYuxiang 而生。

题目描述

LiYuxiang 是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是 LiYuxiang,你能完成这个任务吗?

此题和原题的不同点:

11. 每种草药可以无限制地疯狂采摘。

22. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!

输入格式

输入第一行有两个整数,分别代表总共能够用来采药的时间 tt 和代表山洞里的草药的数目 mm。

第 22 到第 (m + 1)(m+1) 行,每行两个整数,第 (i + 1)(i+1) 行的整数 a_i, b_iai​,bi​ 分别表示采摘第 ii 种草药的时间和该草药的价值。

输出格式

输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

输入输出样例

输入 #1复制

70 3
71 100
69 1
1 2

输出 #1复制

140

说明/提示

数据规模与约定

  • 对于 30\%30% 的数据,保证 m \le 10^3m≤103 。
  • 对于 100\%100% 的数据,保证 1 \leq m \le 10^41≤m≤104,1 \leq t \leq 10^71≤t≤107,且 1 \leq m \times t \leq 10^71≤m×t≤107,1 \leq a_i, b_i \leq 10^41≤ai​,bi​≤104。

思路:

本题属于完全背包问题

完全背包和 01 背包的区别就在于对时间大小枚举的顺序不同。

从二维数组上区别 01 背包和完全背包,就是状态转移方程的差别

在采第  i 种草药时,完全背包在选择采这个草药时,最优解是同行的那一个,

而 01 背包比较的是上一行的那一个。

代码:

#include<bits/stdc++.h>
using namespace std;

const int maxm = 10010, maxt = 10000010;
long long v[maxm], t[maxm], f[maxt];
int main(){
	int T , m;
	cin >> T >> m;
	for(int i = 1;i <= m ;i ++) 
	cin >> t[i] >> v[i];
	for(int i = 1;i <= m;i ++)
	{
		for(int j = t[i];j <= T;j ++)
		{
			f[j] = max(f[j],f[j - t[i]] + v[i]);
		}
	}
	cout << f[T];
}

第二题:

题目背景

《爱与愁的故事第四弹·plant》第一章。

题目描述

爱与愁大神后院里种了 nn 棵樱花树,每棵都有美学值 C_i(0 \le C_i \le 200)Ci​(0≤Ci​≤200)。爱与愁大神在每天上学前都会来赏花。爱与愁大神可是生物学霸,他懂得如何欣赏樱花:一种樱花树看一遍过,一种樱花树最多看 A_i(0 \le A_i \le 100)Ai​(0≤Ai​≤100) 遍,一种樱花树可以看无数遍。但是看每棵樱花树都有一定的时间 T_i(0 \le T_i \le 100)Ti​(0≤Ti​≤100)。爱与愁大神离去上学的时间只剩下一小会儿了。求解看哪几棵樱花树能使美学值最高且爱与愁大神能准时(或提早)去上学。

输入格式

共 n+1n+1行:

第 11 行:现在时间 T_sTs​(几时:几分),去上学的时间 T_eTe​(几时:几分),爱与愁大神院子里有几棵樱花树 nn。这里的 T_sTs​,T_eTe​ 格式为:hh:mm,其中 0 \leq hh \leq 230≤hh≤23,0 \leq mm \leq 590≤mm≤59,且 hh,mm,nhh,mm,n 均为正整数。

第 22 行到第 n+1n+1 行,每行三个正整数:看完第 ii 棵树的耗费时间 T_iTi​,第 ii 棵树的美学值 C_iCi​,看第 ii 棵树的次数 P_iPi​(P_i=0Pi​=0 表示无数次,P_iPi​ 是其他数字表示最多可看的次数 P_iPi​)。

输出格式

只有一个整数,表示最大美学值。

输入输出样例

输入 #1复制

6:50 7:00 3
2 1 0
3 3 1
4 5 4

输出 #1复制

11

说明/提示

100\%100% 数据:T_e-T_s \leq 1000Te​−Ts​≤1000(即开始时间距离结束时间不超过 10001000 分钟),n \leq 10000n≤10000。保证 T_e,T_sTe​,Ts​ 为同一天内的时间。

样例解释:赏第一棵樱花树一次,赏第三棵樱花树 22 次。

 

本题属于混合背包问题

既有01背包也有完全背包,还有可以看有限次数的背包

使用次数无限:直接按完全背包公式(正序)更新即可。

使用次数有限:如果是多重背包,也直接把该物品按完全背包的解法带入即可,01背包可以看做多重背包的特殊情况,不用再讨论。

但是本题如果使用完全背包,则测试点会超时

因此查看题解后,发现多重背包可以使用二进制来表示

即将其分为二进制位

这样可以表示所有数目,同时也大大缩短了程序运行时间

#include<bits/stdc++.h>
using namespace std;
int a[10001],b[10001],c[10001],f[1000010],n,m;
int x1,yy,x2,y2;
int co[1000001],v[1000001],top;
void aaa()
{
	for(int i=1;i<=n;i++)
	{
		int aa=1;
		while(c[i]!=0)
		{
			co[++top]=a[i]*aa;
			v[top]=b[i]*aa;
			c[i]-=aa;
			aa*=2;
			if(c[i]<aa)
			{
				co[++top]=a[i]*c[i];
				v[top]=b[i]*c[i];
				break;
			}
		}
	}
}
int main()
{
cin>>x1>>yy>>x2>>y2;
    if(yy>y2)
    {
        y2+=60;
        x2--;
    }
    m=(x2-x1)*60+y2-yy;
    cin>>n
    for(int i=1;i<=n;i++)
    {
    	scanf("%d%d%d",&a[i],&b[i],&c[i]);
    	if(!c[i]) c[i]=9999999;
    }
    aaa();
    for(int i=1;i<=top;i++)
    	for(int j=m;j>=co[i];j--)
    		f[j]=max(f[j],f[j-co[i]]+v[i]);
   cout<<f[m]<<endl;
}

 

第三题:

# [NOIP2012 普及组] 摆花

## 题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 $m$ 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 $n$ 种花,从 $1$ 到 $n$ 标号。为了在门口展出更多种花,规定第 $i$ 种花不能超过 $a_i$ 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

## 输入格式

第一行包含两个正整数 $n$ 和 $m$,中间用一个空格隔开。

第二行有 $n$ 个整数,每两个整数之间用一个空格隔开,依次表示 $a_1,a_2, \cdots ,a_n$。

## 输出格式

一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 $10^6+7$ 取模的结果。

## 样例 #1

### 样例输入 #1

```
2 4
3 2
```

### 样例输出 #1

```
2
```

## 提示

【数据范围】

对于 $20\%$ 数据,有 $0<n \le 8,0<m \le 8,0 \le a_i \le 8$。

对于 $50\%$ 数据,有 $0<n \le 20,0<m \le 20,0 \le a_i \le 20$。

对于 $100\%$ 数据,有 $0<n \le 100,0<m \le 100,0 \le a_i \le 100$。

NOIP 2012 普及组 第三题

 

本题实际就是

有n种元素,每种元素分别有a【n】个,求任取其中元素,使其达到m个的方案有几种】

从 1 到 nn​考虑每个 元素 的值,和当前的前i​ 个数的总和 k​,然后枚举当前  所有可能的值,再递归求解。

 并打表记录即可

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], rmb[maxn][maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    if(rmb[x][k]) return rmb[x][k]; //搜过了就返回
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    rmb[x][k] = ans; //记录当前状态的结果
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

 第四题:

# [NOIP2006 提高组] 金明的预算方案

## 题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 $n$ 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

| 主件 | 附件 |
| :----------: | :----------: |
| 电脑 | 打印机,扫描仪 |
| 书柜 | 图书 |
| 书桌 | 台灯,文具 |
| 工作椅 | 无 |

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 $0$ 个、$1$ 个或 $2$ 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 $n$ 元。于是,他把每件物品规定了一个重要度,分为 $5$ 等:用整数 $1 \sim 5$ 表示,第 $5$ 等最重要。他还从因特网上查到了每件物品的价格(都是 $10$ 元的整数倍)。他希望在不超过 $n$ 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 $j$ 件物品的价格为 $v_j$,重要度为$w_j$,共选中了 $k$ 件物品,编号依次为 $j_1,j_2,\dots,j_k$,则所求的总和为:

$v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k}$。

请你帮助金明设计一个满足要求的购物单。

## 输入格式

第一行有两个整数,分别表示总钱数 $n$ 和希望购买的物品个数 $m$。

第 $2$ 到第 $(m + 1)$ 行,每行三个整数,第 $(i + 1)$ 行的整数 $v_i$,$p_i$,$q_i$ 分别表示第 $i$ 件物品的价格、重要度以及它对应的的主件。如果 $q_i=0$,表示该物品本身是主件。

## 输出格式

输出一行一个整数表示答案。

## 样例 #1

### 样例输入 #1

```
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
```

### 样例输出 #1

```
2200
```

## 提示

#### 数据规模与约定

对于全部的测试点,保证 $1 \leq n \leq 3.2 \times 10^4$,$1 \leq m \leq 60$,$0 \leq v_i \leq 10^4$,$1 \leq p_i \leq 5$,$0 \leq q_i \leq m$,答案不超过 $2 \times 10^5$。

既然物品分为主件和附件两类,

每个主件最多包含两个附件。

进行枚举有五种情况: 

1买主不买附

2买主买1号附件

3买主买2号附件

4不买

5买主买1,2号附件

属于01背包的变式。

#include<iostream>
using namespace std;
int f[33000],v,n,w[70],c[70],q[33000][3]={0},qb[33000]={0},pd;
int main()
{
    cin>>v>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>w[i]>>c[i]>>pd;c[i]=c[i]*w[i];
        if(pd){qb[i]=1;if(!q[pd][1]){q[pd][1]=i;}else{q[pd][2]=i;}}
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=v;j>=w[i];j--)
        {
            if(!qb[i])/
            {
                f[j]=max(f[j],f[j-w[i]]+c[i]);
                if(w[i]+w[q[i][1]]<=j){f[j]=max(f[j],f[j-w[i]-w[q[i][1]]]+c[i]+c[q[i][1]]);}
                if(w[i]+w[q[i][2]]<=j){f[j]=max(f[j],f[j-w[i]-w[q[i][2]]]+c[i]+c[q[i][2]]);}
                if(w[i]+w[q[i][1]]+w[q[i][2]]<=j){f[j]=max(f[j],f[j-w[i]-w[q[i][1]]-w[q[i][2]]]+c[i]+c[q[i][1]]+c[q[i][2]]);}
            }
        }
    }
    cout<<f[v];
    return 0;
}

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值