搜索二维矩阵

题目

思路

  1. 暴力解法,直接遍历矩阵,时间复杂度为o(n^2),空间复杂度为o(1).
  2. 遍历每一行,对每一行进行二分查找,时间复杂度为o(nlogn),空间复杂度为o(1)
class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int row = matrix.size();
        for( int i = 0; i < row; i++) {
            bool res = binary(matrix[i],target);
            if(res == true) {
                return true;
            }
        }
        return false;
    }
public:
    bool binary(vector<int>& nums,int target) {//二分查找
        int low = 0;
        int high = nums.size()-1;
        int mid = (low+high)/2;
        while(low<=high) {
            int mid = (low+high)/2;
            if( nums[mid] == target ) {
                return true;
            }else if(target > nums[mid] ) {
                low = mid+1;
            }
            else {
                high = mid-1;
            }
        }
        return false;
    }
};

进阶

我们知道矩阵右上角的元素是该行的最小元素,该列的最大元素,因此可以从右上角开始遍历,当目标值大于当前值时,向下遍历,当目标值小于当前值时,向左遍历。向下遍历的次数最多为行数,向左遍历的次数最多为列数,故时间复杂度为o(n+m)(n和m是行数和列数),空间复杂度为o(1)。

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int row = matrix.size();
        int col = matrix[0].size();
        int i = row-1;
        int j = 0;
        while( i >= 0 && j <col) {
            if(matrix[i][j] == target) {
                return true;
            } else if( matrix[i][j] <target ) {
                j++;
            } else {
                i--;
            }
        }
        return false;
    }

};

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值