剑指offer-矩阵覆盖

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?


比如n=3时,2*3的矩形块有3种覆盖方法:

题目分析

假设:n块矩形有f(n)种覆盖方法。进行逆向分析,要完成最后的搭建有两种可能。

因此此题的递推公式为发f(n) = f(n-1)+f(n-2)(f(1) = 1,f(2) = 2 ),代码如下:具体优化参考斐波那契数列。

public class Solution {
    public int rectCover(int target) {
        if(target == 0) {
            return 0;
        }
        if(target == 1) {
            return 1;
        }
        if(target == 2) {
            return 2;
        }
        return rectCover(target-1) + rectCover(target-2);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值