题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
比如n=3时,2*3的矩形块有3种覆盖方法:
题目分析
假设:n块矩形有f(n)种覆盖方法。进行逆向分析,要完成最后的搭建有两种可能。
因此此题的递推公式为发f(n) = f(n-1)+f(n-2)(f(1) = 1,f(2) = 2 ),代码如下:具体优化参考斐波那契数列。
public class Solution {
public int rectCover(int target) {
if(target == 0) {
return 0;
}
if(target == 1) {
return 1;
}
if(target == 2) {
return 2;
}
return rectCover(target-1) + rectCover(target-2);
}
}