Fast-rcnn配置运行

本文档详细介绍了Fast-rcnn的配置和运行步骤,包括从Git克隆源码,进入lib目录编译,解决编译过程中可能出现的cudnn相关错误,以及如何下载模型、安装依赖并运行demo。
摘要由CSDN通过智能技术生成

配置运行步骤

一、Git fast-rcnn源码
git clone –recursive https://github.com/rbgirshick/fast-rcnn.git

二、进fast-rcnn/lib目录进行编译
cd /home/服务器的名字/fast-rcnn/lib
make
目录如下:
这里写图片描述

三、编译

make -j16 && make pycaffe

这里写图片描述

可能出现的错误

1、cudnn.hpp

./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’  
         pad_h, pad_w, stride_h, stride_w));  
                                         ^  

解决办法:
1.cp caffe里的cudnn.hpp ./include/caffe/util/cudnn.hpp
2.将./src/caffe/layer里所有以cudnn开头的文件,如cudnn_xxx_layer.cu,cudnn_xxx_layer.cpp
都替换成最新版的caffe里的相应的同名文件。

2、cudnn_xxx_layer.hpp缺失

解决方法:将caffe/include中的layer文件夹复制到caffe-fast-rcnn中

四、运行

  1. 下载模型
    ./data/scripts/fetch_fast_rcnn_models.sh

这里写图片描述
2. 安装easydict
sudo apt-get install python-pip
sudo pip install easydict
3. 运行demo
./tools/demo.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值