- 博客(2)
- 收藏
- 关注
原创 线搜索方法—armijo算法
我们记录了每个迭代步骤的点,并绘制了迭代轨迹和目标函数的等高线图。不难发现,由于Armijo线搜索方法是一个近似的步长选择方法,它通过比较目标函数的实际改进与预期改进的关系来选择步长。虽然该方法能够找到迭代方向上的足够降低目标函数值的步长,但并不保证在每次迭代都能找到全局最小值。在Armijo线搜索中,初始点和参数的选择也可能影响搜索的结果。故有其他优化算法的产生。运行结果:选择的步长: 4.4408920985006264e-17。采用armijo算法进行python代码尝试:python代码如下。
2024-01-24 21:43:56 1074
原创 优化算法学习笔记(一)之线搜索
线搜索是一个一元优化问题,为了引导搜索,可以使用线搜索目标的导数,即x+ad处沿d的方向导数。使用SciPy中的minimize函数,该函数可以用于多维优化问题。考虑以下目标函数:这是一个二维的凸函数,最小值在处。
2024-01-24 21:21:48 558
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人