几个线性筛的模板……

水到不行的模板几个,我就是来凑数的……

欧拉筛法求素数

#include <iostream>
#include <cstdio>
using namespace std;
bool check[20000000];
int prime[2000000];
int main()
{
    int n,tot = 0;
    cin >> n;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i])
            prime[++tot] = i;
        for(int j = 1;j <= tot;j ++)
        {
            if(i*prime[j] > n)
                break ;
            check[i*prime[j]] = 1;
            if(!i%prime[j])
                break ;
        }
    }
    for(int i = 1;i <= tot;i ++)
        printf("%d\n",prime[i]);
    return 0;
}

后面的代码都以这个筛法为基础

线性筛筛欧拉函数

#include <iostream>
using namespace std;
bool check[2000000];
int prime[2000000];
int fai[2000000];
int main()
{
    int n,tot = 0;
    cin >> n;
    fai[1] = 1;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i])
        {
            prime[++tot] = i;
            fai[i] = i-1;
        }
        for(int j = 1;j <= tot;j ++)
        {
            if(i*prime[j] > n)
                break ;
            check[i*prime[j]] = 1;
            if(i%prime[j] == 0)
            {
                fai[i*prime[j]] = fai[i] * prime[j];
                break;
            }
            fai[i*prime[j]] = fai[i] * (prime[j] - 1);
        }
    }
    for(int i = 1;i <= n;i ++)
        cout << fai[i] << " ";
    return 0;
}

线性筛筛莫比乌斯函数

#include <iostream>
using namespace std;
bool check[2000000];
int prime[2000000];
int miu[2000000];
int main()
{
    int n,tot = 0;
    cin >> n;
    miu[1] = 1;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i])
        {
            prime[++tot] = i;
            miu[i] = -1;
        }
        for(int j = 1;j <= tot;j ++)
        {
            if(i*prime[j] > n)
                break;
            check[i*prime[j]] = 1;
            if(i%prime[j] == 0)
            {
                miu[i*prime[j]] = 0;
                break;
            }
            else
                miu[i*prime[j]] = -miu[i];
        }
    }
    for(int i = 1;i <= n;i ++)
        cout << miu[i] << " ";
    return 0;
}

山东这几年反演专场所以要注意下这个……

线性筛筛约数个数

#include <iostream>
using namespace std;
bool check[2000000];
int prime[2000000];
int d[2000000];
int t[2000000];
int main()
{
    int n,tot = 0;
    cin >> n;
    d[1] = 1;
    t[1] = 1;
    for(int i = 2;i <= n;i ++)
    {
        if(!check[i])
        {
            prime[++tot] = i;
            d[i] = 2;
            t[i] = 1;
        }
        for(int j = 1;j <= tot;j ++)
        {
            if(i*prime[j] > n)
                break;
            check[i*prime[j]] = 1;
            if(i%prime[j] == 0)
            {
                d[i*prime[j]] = d[i] + d[i]/(t[i]+1);
                t[i*prime[j]] = t[i] + 1;
                break;
            }
            d[i*prime[j]] = d[i] * d[prime[j]];
            t[i] = 1;
        }
    }
    for(int i = 1;i <= n;i ++)
        cout << d[i] << " ";
    return 0;
}
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值