在全球积极应对气候变化、推动绿色低碳发展的大背景下,碳中和已成为各行业发展的重要目标。电商行业作为现代经济的重要组成部分,其运营过程中的碳排放问题备受关注。随着消费者环保意识的增强,对电商平台的绿色运营也提出了更高要求。在此背景下,Temu与SHEIN等跨境电商平台积极探索,通过构建API碳排放数据追踪系统,实现对供应链碳排放的精准监测与管理,推动电商行业向碳中和目标迈进。
二、Temu的API碳排放数据追踪系统
(一)系统架构
Temu的API碳排放数据追踪系统采用分层架构设计,包括数据采集层、数据处理层、数据分析层和应用层。数据采集层通过与供应商系统、物流系统、仓储系统等进行API对接,实时获取能源消耗、运输里程、货物周转量等碳排放相关数据。数据处理层对采集到的数据进行清洗、转换和存储,确保数据的准确性和一致性。数据分析层运用先进的数据分析算法和模型,对碳排放数据进行深度挖掘和分析,生成各类碳排放报告和可视化图表。应用层则将分析结果以直观的方式呈现给企业管理层和供应链合作伙伴,为决策提供支持。
(二)功能模块
- 数据采集模块:该模块通过API接口与多个数据源进行连接,实现了碳排放数据的自动化采集。例如,与供应商系统对接,获取生产过程中的能源消耗数据;与物流系统对接,获取运输车辆的行驶里程和油耗数据等。
- 碳排放计算模块:依据不同能源的碳排放因子,对采集到的能源消耗数据进行换算,计算出各个环节的碳排放量。同时,采用生命周期评估(LCA)模型,从产品或服务的原材料获取、生产制造、运输配送、使用阶段直至废弃处理的整个生命周期角度,对每个阶段的碳排放进行量化分析与评估。
- 数据分析与可视化模块:运用数据分析算法和模型,对碳排放数据进行统计、分析和预测。通过柱状图、折线图、饼图、地图等可视化图表,直观展示碳排放的总量、各环节占比、变化趋势以及不同地区的分布情况,方便企业管理人员进行决策。
- 预警与决策支持模块:设定碳排放预警阈值,当碳排放量超过阈值时,系统自动发出预警信息。同时,根据碳排放数据分析结果,为企业提供减排策略建议,如优化物流路线、采用新能源运输工具、推广绿色包装等。
(三)技术实现
Temu在技术实现上采用了多种先进技术。在数据采集方面,利用API接口技术实现了与多个系统的无缝对接,确保数据的实时性和准确性。在数据处理和分析方面,运用云计算、大数据和人工智能技术,提高了数据处理效率和分析准确性。例如,采用分布式计算框架对大规模碳排放数据进行并行处理,利用机器学习算法对碳排放趋势进行预测。在可视化展示方面,借助数据可视化工具,将复杂的碳排放数据以直观的图表形式呈现,方便用户理解和使用。
三、SHEIN的API碳排放数据追踪系统
(一)系统架构
SHEIN的API碳排放数据追踪系统同样采用分层架构,但更注重与自身供应链的深度融合。数据采集层除了与供应商、物流商等外部系统对接外,还与SHEIN内部的ERP、WMS等系统进行集成,实现了供应链全流程数据的实时采集。数据处理层建立了专门的数据仓库,对采集到的数据进行存储和管理。数据分析层结合SHEIN的业务特点,开发了一系列定制化的分析模型,如按需生产模式下的碳排放预测模型、供应商碳排放绩效评估模型等。应用层为企业内部各部门和供应商提供了个性化的应用界面,方便不同用户根据自身需求获取碳排放数据和分析结果。
(二)功能模块
- 供应链全流程数据采集模块:通过API接口与供应链各环节系统对接,实现了从原材料采购、生产制造、仓储物流到销售配送的全流程碳排放数据采集。例如,实时获取面料采购过程中的碳排放数据、生产车间的能源消耗数据以及物流运输的碳排放数据等。
- 供应商碳排放绩效评估模块:根据采集到的供应商碳排放数据,结合生产效率、产品质量等指标,对供应商的碳排放绩效进行综合评估。评估结果将作为供应商选择、合作和激励的重要依据,推动供应商采取减排措施,降低供应链整体碳排放。
- 按需生产碳排放预测模块:结合SHEIN的按需生产模式,利用历史订单数据和碳排放数据,构建碳排放预测模型。通过该模型,企业可以提前预测不同订单规模和生产计划下的碳排放量,为生产决策提供参考,实现碳排放的最小化。
- 绿色供应链协同模块:为供应链上下游企业提供了一个协同平台,企业可以在平台上共享碳排放数据、交流减排经验、协同制定减排计划。通过协同合作,共同推动供应链的绿色转型,实现碳中和目标。
(三)技术实现
SHEIN在技术实现上注重与自身业务的紧密结合。在数据采集方面,开发了定制化的API接口,确保与供应链各环节系统的无缝对接。在数据分析方面,利用自身的业务数据和行业经验,构建了具有针对性的分析模型,提高了数据分析的准确性和实用性。在系统集成方面,采用了微服务架构,实现了与内部各业务系统的灵活集成,提高了系统的可扩展性和可维护性。
四、Temu与SHEIN系统的优势与不足
(一)优势
- 数据全面性:Temu和SHEIN的系统都实现了供应链全流程的碳排放数据采集,涵盖了生产、运输、仓储、销售等多个环节,为全面评估供应链碳排放提供了数据支持。
- 分析准确性:采用了先进的数据分析算法和模型,结合行业特点和业务需求,对碳排放数据进行深度挖掘和分析,提高了分析结果的准确性和可靠性。
- 决策支持能力:通过数据可视化展示和预警与决策支持模块,为企业提供了直观的碳排放数据和分析结果,帮助企业管理层制定科学合理的减排策略,推动供应链的绿色转型。
- 协同合作机制:SHEIN的系统建立了绿色供应链协同模块,促进了供应链上下游企业之间的合作与交流,共同推动供应链的碳中和进程。
(二)不足
- 数据质量依赖:系统的准确性和可靠性高度依赖于采集到的数据质量。如果数据源存在数据不准确、不完整等问题,将影响碳排放计算和分析结果。
- 技术成本较高:构建和运行API碳排放数据追踪系统需要投入大量的技术资源和成本,包括硬件设备、软件开发、数据存储和维护等方面。对于一些小型电商企业来说,可能面临较大的经济压力。
- 标准统一性:目前,电商行业缺乏统一的碳排放数据标准和计算方法,不同企业的碳排放数据可能存在差异,影响了数据的可比性和共享性。
- 用户接受度:系统的应用需要企业内部各部门和供应链合作伙伴的积极参与和配合。如果用户对系统的功能和价值认识不足,可能导致系统推广困难。