动态规划:01背包

这篇博客详细介绍了01背包问题,这是一种经典的动态规划应用场景。内容包括问题描述、形式化描述、递归关系的建立以及具体的计算过程。通过一个实例展示了如何计算背包中物品的最大价值,并给出了相应的代码实现,强调了在编程时需要注意的下标问题。
摘要由CSDN通过智能技术生成

问题描述

01背包是一个可以用动态规划解决的经典问题:给定 n 种物品和一背包。物品 i 的重量是 wi ,其价值为 vi ,背包的容量为 c 。问应如何选择装入背包中的物品,使得装入背包的物品的总价值最大?
在选择装入背包的物品时,对每种物品 i 只有两种选择,即装入背包或不装入背包。不能将物品 i 装入背包多次,也不能只装入部分的物品 i 。因此,称为01背包问题。

形式化描述

给定 c>0,wi>0,vi>0,1in ,要求找出一个 n 元0-1向量 (x1,x2,,xn),xi{0,1},1in

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值