目录
1. 大模型开发与训练框架
(1) 大模型训练工具
- PyTorch Lightning
- 简化大模型训练流程(如分布式训练、混合精度)。
- DeepSpeed(微软)
- 优化训练效率(支持千亿级参数模型,如ZeRO-3技术)。
- Megatron-LM(NVIDIA)
- 专为Transformer模型设计的高效训练框架。
(2) 微调(Fine-tuning)工具
- Hugging Face Transformers
- 提供预训练模型(BERT、GPT-2等)和微调接口。
- LoRA/Lit-GPT
- 低成本微调技术(适配小显存设备)。
(3) 模型压缩与优化
- TensorRT-LLM(NVIDIA)
- 大模型推理加速(GPU优化)。
- GGML
- 量化工具(支持CPU端运行LLaMA等模型)。
2. 大模型部署与服务化
(1) 推理框架
- vLLM
- 高吞吐量推理(支持连续批处理)。
- TGI(Hugging Face Text Generation Inference)
- 企业级推理服务(支持REST API)。
(2) 边缘端部署
- MLC-LLM
- 将大模型部署到手机、浏览器等终端。
- ONNX Runtime
- 跨平台模型推理优化。
3. 数据处理与增强工具
(1) 数据清洗与标注
- Label Studio
- 标注工具(支持文本、图像多模态数据)。
- Snorkel
- 弱监督学习(用规则生成训练标签)。
(2) 向量数据库
- Milvus/Pinecone
- 存储和检索嵌入向量(用于RAG应用)。
- FAISS(Facebook)
- 高效相似性搜索库。
4. 应用层工具
(1) 低代码/无代码平台
- Dify
- 可视化搭建LLM应用(支持国产模型)。
- BentoML
- 快速打包和部署模型服务。
(2) 领域专用工具
- 医学:DeepChem(药物发现)、BioGPT(生物文本生成)。
- 金融:FinGPT(开源金融大模型)。
5. 评估与安全工具
(1) 模型评估
- EleutherAI LM Evaluation Harness
- 标准化大模型评测(如MMLU、GSM8K)。
- HELM(斯坦福)
- 全面评估语言模型表现。
(2) 安全与对齐
- Guardrails
- 限制模型输出(避免有害内容)。
- RLHF(强化学习人类反馈)
- 工具库:TRL(Transformer Reinforcement Learning)。
6. 多模态与扩展
(1) 多模态模型
- CLIP(图文匹配)、Whisper(语音转录)。
- LLaVA(图文对话模型)。
(2) 插件系统
- ChatGPT Plugins
- 扩展模型能力(如订机票、查股票)。
7. 开源模型与社区
(1) 开源大模型
- LLaMA 2(Meta)、Falcon(阿联酋)、Mistral(法国)。
- 中文社区:ChatGLM(智谱)、Qwen(通义千问)。
(2) 模型中心
- Hugging Face Hub
- 共享和下载预训练模型。
8. 云服务与基础设施
(1) 托管服务
- OpenAI API、Anthropic Claude
- 国产云:文心千帆(百度)、通义灵码(阿里)。
(2) 计算平台
- Lambda Labs(GPU租赁)、RunPod(云容器)。
作者:Galdradraumur
链接:https://juejin.cn/post/7501892144794730506
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。