视觉SLAM是广泛应用于机器人和增强现实的方法,一般是使用粒子滤波的SLAM方法,同时非滤波方案也成为更有效率。
基于视觉识别的像素检测,标记背景中的目标和目标跟踪的定位方法之外的相机定位方法,需要先行生成3D结构,场景图像和对应的相机视角,在这种情况下,定位问题是图像与数据库匹和相机位置选择,在没有场景的情况下需要同时构建地图以及确定位姿。
非滤波方法的优势是不用实时更新地图数据,可以选用地图的子集。
非滤波视觉SLAM系统主要有8部分组成,(1)数据输入类型,(2)数据关联,(3)初始化,(4)位姿估计,(5)地图生成,(6)地图维护,(7)失效恢复,(8)回环闭合
直接方法是亮度一致性约束 ,还有光流法