堆排序及其复杂度分析

本文详细探讨了堆排序的建堆和删除堆顶的时间复杂度。在建堆过程中,通过等差-等比数列求和及错位相减法,得出建堆的渐进复杂度为O(n)。而在删除堆顶时,由于需要下沉n-1次,每次下沉最大交换次数为logn,故删除堆顶的时间复杂度为O(nlogn)。因此,堆排序总的时间复杂度为O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以升序排序为例,大顶堆实现:

package leetcode.sort.compare.select;

import java.util.Arrays;

public class HeapSort {

    public void downAdjust(int[] array, int parentIndex, int length) {
        int largestIndex = parentIndex;
        int lChildIndex = 2 * parentIndex + 1;
        int rChildIndex = lChildIndex + 1;
        if (lChildIndex < length && array[largestIndex] < array[lChildIndex]) {
            largestIndex = lChildIndex;
        }
        if (rChildIndex < length && array[largestIndex] < array[rChildIndex]){
            largestIndex = rChildIndex;
        }

        // 父节点不是最大的,将最大节点和父节点交换
        if (largestIndex != parentIndex) {
            int temp = array[parentIndex];
            array[parentIndex] = array[largestIndex];
            array[largestIndex] = temp;

            // !!!交换后可能会影响子树大小关系,递归使子树符合大顶堆规则
            d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值