描述
给定两个数m,n,其中m是一个素数。
将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m。
-
输入
-
第一行是一个整数s(0<s<=100),表示测试数据的组数
随后的s行, 每行有两个整数n,m。
输出
- 输出m的个数。 样例输入
-
2 100 5 16 2
样例输出
-
24
15
-
-
-
-
-
这是一个大数阶乘的问题,直接做会出现溢出的情况,所以我们可以换个思想来考虑这个问题
-
m!=1*2*3*4*....*m;
-
可以将m!写成与n倍数有关乘积的和其他和n没有关系的,既:
-
m!=(n*2n*3n*..*kn)*other
-
=n^k(1*2*3*..k)*other
-
=n^k*k!*other
-
其中kn<=m,所以相应的k=m/n;
-
从这个表达式中可以提取出k个n,然后按照相同的方法循环下去可以求出k!中因子n的个数
-
每次求出n的个数的和就是m!中因子n的总个数
-
代码如下:
-
#include<stdio.h>
#include<math.h>
int main()
{
int a,m,n,k;
scanf("%d",&a);
while(a--)
{
k=0;
scanf("%d %d",&n,&m);
while(n)
{
n=n/m;
k=k+n;
}
printf("%d\n",k);
}
return 0;
} -
-
-