大数阶乘因式分解

描述

给定两个数m,n,其中m是一个素数。

将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m。

输入
第一行是一个整数s(0<s<=100),表示测试数据的组数
随后的s行, 每行有两个整数n,m。
输出
输出m的个数。
样例输入
2
100 5
16 2
样例输出
24

15





这是一个大数阶乘的问题,直接做会出现溢出的情况,所以我们可以换个思想来考虑这个问题

m!=1*2*3*4*....*m;

可以将m!写成与n倍数有关乘积的和其他和n没有关系的,既:

m!=(n*2n*3n*..*kn)*other

  =n^k(1*2*3*..k)*other

  =n^k*k!*other

其中kn<=m,所以相应的k=m/n;

从这个表达式中可以提取出k个n,然后按照相同的方法循环下去可以求出k!中因子n的个数

每次求出n的个数的和就是m!中因子n的总个数

代码如下:

#include<stdio.h>
#include<math.h>
int main()
{
  int a,m,n,k;
  scanf("%d",&a);
  while(a--)
  {
      k=0;
  scanf("%d %d",&n,&m);
  while(n)
  {
      n=n/m;
      k=k+n;
  }
  printf("%d\n",k);
  }
return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值