问题描述
小明先把硬币摆成了一个 n 行 m 列的矩阵。
随后,小明对每一个硬币分别进行一次 Q 操作。
对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。
其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。
当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。
小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。
聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
数据格式
输入数据包含一行,两个正整数 n m,含义见题目描述。
输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
对于10%的数据,n、m <= 10^3;
对于20%的数据,n、m <= 10^7;
对于40%的数据,n、m <= 10^15;
对于10%的数据,n、m <= 10^1000(10的1000次方)。
输入样例
2 3
样例输出
1
问题分析
如果一枚正面的硬币被翻了奇数次,那么它原来的状态肯定是反面朝上 。
对于Q的定义可以看出:
对于样例坐标为(2,3)的硬币会被(1,1),(1,3),(2,1),(2,3)影响。
那么不难看出对于(x,y)的硬币需要被横坐标为x的约数与纵坐标为y的约数的操作影响。
那么综上所述 若想找到会翻转奇数次的硬币 只需要(x,y)中x,y有奇数个约数即可。
那么就引出来一个新问题——什么数有奇数个约数
如果知道的话 就会发现完全平方数有奇数个约数。
=====================================================================
原因如下
因为对一个数x来说,存在因数m,必然存在另一个因数x/m,两个一对,只有完全平方数的平方根对应的因数是其自己,故有奇数个因数。平方数(或称完全平方数),是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9=3×3,9是一个平方数。=====================================================================
怎么求完全平方数的个数呢,对于该问题,其矩阵为n*m,而且是从1开始编号的,对于n,我们可以求sqrt(n),然后取整,那么,在1-n的范围内的完全平方数的个数为(int)(sqrt(n))个,而sqrt(n)*sqrt(m)就是所有的横纵坐标都是完全平方数的硬币的个数。
由于给出的n,m较大 因此考验的是大数的运算。
代码
#include<iostream>
#include <vector>
using namespace std;
string mul(string s1, string s2) {
int n = s1.size();
int m = s2.size();
vector<int>num(n + m);//存储答案
for (int i = n - 1;i >= 0;i--) {
int x = s1[i] - '0';
for (int j = m - 1;j >= 0;j--) {
int y = s2[j] - '0';
num[i + j + 1] += x * y;
}
}
for (int i = m + n - 1; i > 0; i--) {
num[i - 1] += num[i] / 10;
num[i] %= 10;
}
int idx = num[0] == 0 ? 1 : 0;
string ans;
while (idx < m + n) {
ans+=num[idx] + '0';
idx++;
}
return ans;
}
//比较
int cmp(string s1, string s2, int pos){
int n = s1.size();
int m = s2.size();
if (n + pos > m) return 1;
if (n + pos < m) return 0;
if (n + pos == m){
for (int i = 0;i < n;i++){
if (s1[i] < s2[i]) return 0;
else if (s1[i] > s2[i]) return 1;
}
}
return 0;
}
string Sqrt(string s){
string ans;
int i;
int n = s.size();
//开方后结果的位数
if (n % 2 == 0) n = n / 2;
else n = n / 2 + 1;
//对结果一位一位的找到最合适的
for (i = 0;i < n;i++){
ans +='0';//增加一位
//位数匹配比较
while (cmp(mul(ans, ans), s, 2 * (n - 1 - i)) != 1){
if (ans[i] > '9') break;
ans[i]++;
}
ans[i]--;
}
return ans;
}
int main() {
string s1, s2;
cin >> s1 >> s2;
cout << mul(Sqrt(s1), Sqrt(s2));
return 0;
}