**
什么是差分呢?
**
差分其实就是前缀和的逆运算了,给定两个数组a和b,那么数组a是数组b的前缀和,b数组就是a的差分,有数组b一定能求出数组a,有数组a不一定能求数组b。
**
差分有什么用呢?
**
运用差分,给定一个数组a和一个区间[l,r],求这个区间在a上加上c,时间复杂度可以由o[n]变成o[1]。也就是说运用差分的这个性质,可以将运算的速度加快。
**
一维差分
**
先来讲讲一维差分,可以看看这道题https://www.acwing.com/problem/content/799/
题目
输入一个长度为n的整数序列。
接下来输入m个操作,每个操作包含三个整数l, r, c,表示将序列中[l, r]之间的每个数加上c。
请你输出进行完所有操作后的序列。
输入格式
第一行包含两个整数n和m。
第二行包含n个整数,表示整数序列。
接下来m行,每行包含三个整数l,r,c,表示一个操作。
输出格式
共一行,包含n个整数,表示最终序列。
数据范围
1≤n,m≤100000,
1≤l≤r≤n,
−1000≤c≤1000,
−1000≤整数序列中元素的值≤1000
输入样例:
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例:
3 4 5 3 4 2
思路
我们先来看看在b数组上加上c,那么a数组有什么变化?
假定在b[1]加上c,那么a[1],a[2],a[3]…a[n]都会加上一个c,因为a是b的前缀和。
那么题目要求在[l,r]这个区间上加上一个数c,那么在b[l]上应该加上一个c,但是b[l+1],b[l+2],b[l+3]…b[n]都会加上c,那么只需在b[r+1]上减去一个c,那么a[r+1],a[r+2]…a[n]都会减去一个c,那么到最后只有[l,r]上加上了一个c,那么问题就解决了。
代码
怎么去实现这个思路呢?
我们可以先让数组a为0,但是题目给出了a[1]到a[n],那么我们可以直接用插入法直接一个一个的插入。
第一次,我们将[1,1]加上a[1].
第二次,我们将[2,2]加上a[2].
第三次,我们将[3,3]加上a[3].
.
.
.
第n次,我们将[n,n]加上a[n].
上代码
#include<iostream>
using namespace std;
int a[100010];
int b[100010];
void insert(int l,int r,int c)
{
b[l]+=c;
b[r+1]-=c;
}
int main()
{
int m,n;
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<=n;i++)insert(i,i,a[i]);
while(m--)
{
int l,r,c;
cin>>l>>r>>c;
insert(l,r,c);
}
for(int i=1;i<=n;i++)
{
b[i]+=b[i-1];//将b数组变成a数组
}
for(int i=1;i<=n;i++)cout<<b[i]<<' ';
return 0;
}
二维差分
原理呢,和一维是一样的,都是假想一个数组b出来,让数组a成为b的前缀和。
只不过呢,在二维数组里面,想减的地方有一部分重复了,那么只需加上这部分重复的即可。
二维数组里,假设在(x1,y1)到(x2,y2)中加上一个数c
那么在b数组中b(x1,y1)+=c,那么后面所有的a(x1,y1)都会加上一个c,再让b(x1,y2)-=c,b(x2,y1)-=c.会发现重复减去了一个c,那么再b(x2,y2)+=c
原理是一样的,应该能看懂吧,我就不写代码啦!